

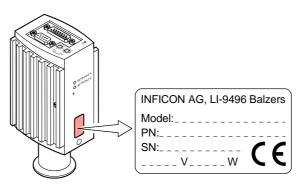
Profibus

DP/V1 Interface for Bayard-Alpert Pirani Gauge

CE

About this Document

This document describes the functionality and programming of the Profibus interface of the BPG402-SP gauge.


For safety information on and technical data of the gauges, please refer to the respective operating manuals ($\rightarrow \square$ [1], [3]).

In information referring to the ionization vacuum measuring part of the gauge, the short designation "BA" (Bayard-Alpert measuring principle) is used.

The designation "Pirani" is used in information referring to the Pirani vacuum measuring part of the gauge.

Product Identification

In all communications with INFICON, please specify the information on the product nameplate. For convenient reference copy that information into the space provided below.

Validity	This document applies to products with part numbers							
	BPG402-S	SP (with	Profibus interface and switching functions)					
			(vacuum connection DN 25 ISO-KF) (vacuum connection DN 40 CF-R)					
	The part n	umber	(PN) can be taken from the product nameplate.					
Intended Use			gauge allows vacuum measurement of non flammable gases and ssure ranges $\rightarrow \square$ [1], [3]).					
	The gauge control dev		e operated with an INFICON controller or another instrument or					
Functional Principle	The function	on of th	e gauge is described in the operating manual (\rightarrow [] [1], [2], [3]).					
		able dev	ofibus interface allows operating the gauge in connection with ices in a Profibus network according to the standard described in					
Trademarks	SEMI®	Semico	onductor Equipment and Materials International, California					
	Profibus		becument contains Profibus-specific information described and I in the Profibus Profiles ($\rightarrow \square$ [4], [6], [7]).					

About this Document Product Identification Validity Intended Use Functional Principle Trademarks	2 2 2 2 2 2 2
 General Data 1.1 Data Rate 1.2 Device Address 1.3 Ident Number 1.4 Configuration Data 1.5 User Parameter Data 1.6 Types of Communication 	5 5 5 5 5 6 6
 2 Data Exchange Mode 2.1 Acyclic Data Transmission with Profibus DPV1 Functionality 2.2 Structure of the Cyclic Data Telegrams in Data Exchange Mode 2.2.1 Parameter Channel 2.2.1.1 PKE Parameter Signature Value 2.2.1.2 PWE Parameter (Process Value) 2.2.1.3 Error Code (Error Message) 2.3 Cyclic Message Telegrams 	7 7 8 8 9 9 10 11
 3 Block Model 3.1 Device Block 3.1.1 Information on the Individual Indices 3.1.1.1 Block Type ID 16 3.1.2 Device Type ID 17 3.1.3 Standard Revision Level ID 18 3.1.4 Device Manufacturer Identifier ID 19 3.1.5 Manufacturer Model Number ID 20 3.1.6 Software or Firmware Revision Level ID 21 3.1.7 Hardware Revision Level ID 22 3.1.8 Device Configuration ID 24 3.1.9 Device State ID 25 3.1.10 Exception Status ID 26 3.1.11 Exception Detail Alarm ID 27 3.1.12 Exception Detail Alarm ID 27 3.1.13 Copy Common Exception Detail Alarm 0 ID 204 3.1.14 Copy Device Exception Detail Alarm 0 ID 205 3.1.15 Copy Manufacturer Exception Detail Alarm 0 ID 203 3.1.16 Copy Device Exception Detail Warning 0 ID 208 3.1.17 Copy Device Exception Detail Warning 0 ID 209 3.1.18 Copy Device Exception Detail Warning 0 ID 209 3.1.19 Copy Manufacturer Exception Detail Warning 0 ID 209 3.1.118 Copy Device Exception Detail Warning 0 ID 210 3.1.19 Copy Manufacturer Exception Detail Warning 0 ID 211 3.1.2 Device Block, Device Behavior 3.1.2 Block Type ID 16 3.2.1 Device Block State Command 3.2 Analog Input Block 3.2.1 Process Value ID 19 3.2.2.2 Status ID 20 3.2.3 Data Type ID 21 3.2.4 Data Unit ID 22 3.2.5 Reading Valid ID 23 3.2.6 Full Scale ID 24 3.2.7 Safe State ID 39 3.2.2.8 Safe Value ID 40 3.2.2.9 Overrange ID 44 3.2.10 Underrange ID 45 3.2.31 Analog Sensor Input Function Block SLOT 1 / Instance 2 3.2.41 Al Block Adjust Command (Pirani) ID 15 3.2.31 Process Value ID 49 3.2.41 Al Block Adjust Command (Pirani) ID 15 3.2.31 Analog Sensor Input Function Block SLOT 1 / Instance 2 3.2.41 Al Block Adjust Command (Pirani) ID 15 	12 13 14 15 16 18 20 20 21 22 23 23 23 23 23 23

NFICON

3.2.3.2 Status ID 20	27
3.2.3.3 Data Type ID 21	27
3.2.3.4 Data Unit ID 22	28
3.2.3.5 Reading Valid ID 23	28
3.2.3.6 Full Scale ID 24	28
3.2.3.7 Safe State ID 39	29
3.2.3.8 Safe Value ID 40	29
3.2.3.9 Overrange ID 44	29
3.2.3.10 Underrange ID 45	29
3.2.4 Analog Sensor Input Function Block SLOT 1 / Instance 3, 4	30
3.2.4.1 Process Value ID 19	30
3.2.4.2 Status ID 20	30
3.2.4.3 Data Type ID 21	30
3.2.4.4 Data Unit ID 22	31
3.2.4.5 Reading Valid ID 23	31
3.3 Transducer Block	32
3.3.1 One Of N Vacuum Gauge Transducer Block / SLOT 1	32
3.3.1.1 One Of N Status Extension	32
3.3.2 Heat Transfer Vacuum Gauge Transducer Block / SLOT 1 / Instance 1	32
3.3.2.1 Block Type ID 101	32
3.3.2.2 Status Extension ID 102	32
3.3.2.3 Sensor Alarm ID 103	32
3.3.2.4 Sensor Warning ID 104	33
3.3.3 Hot Cathode Ion Gauge Transducer Block / SLOT 1 / Instance 2	33
3.3.3.1 Block Type ID 101	33
3.3.2 Status Extension ID 102	33
3.3.3.3 Sensor Alarm ID 103	34
3.3.3.4 Sensor Warning ID 104	34
3.3.3.5 Emission Status ID 105	34
3.3.3.6 Emission Current ID 106	35
3.3.3.7 Active Filament ID 108	35 35
3.3.3.8 Degas Status ID 109	35
3.3.3.9 Active Degas Filament ID 116 3.3.3.10 Mode Filament Selection ID 119	35
3.3.3.11 Emission User Mode State ID 201	35
3.3.3.12 Hot Cathode Block State Command ID 14	36
5.5.5.12 The Califord Block State Command 1D 14	30
Appendix A: Definitions	37
Appendix B: Block Type	40
Appendix C: Electrical Connections	41
Appendix D: Literature	43

For cross-references to other documents, the symbol (\rightarrow \square [XY]) is used.

1	General Data						
1.1	Data Rate	0 0 11	rts all data rates defined in the EN 50170 standard ($\rightarrow \square$ [5]) up omatic data rate setting is supported. Alternatively, a fixed data ted.				
1.2	Device Address	The device address (≙ node address) must be set via two rotary switches wh gauge is installed. For unambiguous identification of the gauge in a Profibus environment, a noc address is required. The node address setting is made on the gauge.					
		ADDRESS MSD LSD $2 \stackrel{4}{,} \stackrel{6}{,} 6 \stackrel{2}{,} \stackrel{4}{,} \stackrel{6}{,} 6$ $0 \stackrel{-}{,} 80 \stackrel{-}{,} 80 \stackrel{-}{,} 8$ $E \stackrel{-}{,} 1 \stackrel{-}{,} A \stackrel{-}{,} E \stackrel{-}{,} A$	The node address $(0 \dots 125_{dec})$ is set in hexadecimal form $(00 \dots 7D_{hex})$ (default value $5C_{hex}$) via the "ADDRESS" switches. The "MSD" switch is used for setting the high-order address nibble and the "LSD" switch for defining the low-order address nibble.				
		The node address is polled by the firmware when the gauge is switched on. If the setting deviates from the stored value, the new value is taken over into the NVRAM. If a value $>7D_{hex}$ ($>125_{dec}$) is entered, the node address setting currently stored in the device remains valid. However, the address can be set via the Profibus master with the "Set Slave Address" service. This address setting will be stored in the EEPROM of the gauge.					

1.3 Ident Number

The ident number assigned to the gauge by the PNO ($\rightarrow \square$ [4]) is:

Gauge	Ident number (hexadecimal)
BPG402-SP	0x09AA

1.4 Configuration Data

Depending on the standard telegrams used (\rightarrow section "Cyclic Message Telegrams"), the following configuration data have to be transmitted to the gauge during the configuration phase:

Standard telegram Master \Rightarrow Slave	Standard telegram Slave \Rightarrow Master	Configuration data
-	4	0x44, 0x84, 0x05, 0x05, 0x05, 0x03
-	5	0x44, 0x86, 0x05, 0x05, 0x05, 0x08
1	4	0xC6, 0x81, 0x84, 0x05, 0x05, 0x05, 0x05, 0x05, 0x03
1	5	0xC6, 0x81, 0x86, 0x05, 0x05, 0x05, 0x05, 0x05, 0x08
3	6	0xC6, 0x87, 0x8C, 0x0A, 0x0A, 0x05, 0x05, 0x05, 0x03
3	7	0xC6, 0x87, 0x8E, 0x0A, 0x0A, 0x05, 0x05, 0x05, 0x08
2	6	0xC8, 0x89, 0x8C, 0x0A, 0x05, 0x05, 0x0A, 0x05, 0x05, 0x05, 0x03
2	7	0xC8, 0x89, 0x8E, 0x0A, 0x05, 0x05, 0x0A, 0x05, 0x05, 0x05, 0x08

1.5 User Parameter Data

Depending on the pressure unit setting (≙ data unit), the following configuration string has to be transmitted to the gauge (parameter data in hexadecimal format):

Pressure unit	User parameter data string
COUNTS ¹⁾	00 00 00 03 E9
Torr	00 00 00 05 15
Micron	00 00 00 05 16
mbar	00 00 00 05 1C
Pascal	00 00 00 05 1D

¹⁾ If COUNTS is selected as pressure unit, a value is output, which can be converted into a corresponding pressure value by means of a formula (→ section "Analog Sensor Input Function Block" for more information).

1.6 Types of Communication

BPG402-SP works according to the Profibus DPV1 specification and can be addressed in cyclic or acyclic data traffic ($\rightarrow \square$ [4]).

Acyclic data traffic should be used to make device or process specific settings such as definition of the Safe Values, Safe States etc. or for reading or writing of rarely used attributes.

Cyclic data traffic is used for continuous exchange of the required process parameter values, i.e. pressure value and status indications. A number of standard telegrams are available for cyclic data traffic. They can be selected according to requirements (\rightarrow section "Cyclic Message Telegrams").

2 Data Exchange Mode

2.1 Acyclic Data Transmission with Profibus DPV1 Functionality

The reading and writing operations defined in Profibus are based on a slot index address scheme. In BPG402-SP, all device functions are organized in the following blocks:

- A device block describing all organizational parameters of the gauge (serial number, manufacturer, software version, ...)
- An Analog Sensor Function Block describing the function of the pressure presentation
- An Analog Sensor Transducer Block describing the physical interface between the gauge and the process (emission current, ion current, ...).

The block model is described in detail in section "Block Model".

Each block is assigned to a separate slot. The exact assignment Block \Rightarrow Slot \Rightarrow Index is described in section "Block Model". The Device Block is assigned to Slot 0, the transducer and functional blocks to Slot 1.

There are 254 indices per slot. The indices can have a width of 255 bytes. All values that can be accessed via Profibus have to be mirrored to one of these slots/ indices.

The parameters are generally numbered in ascending order, starting with index 16. Services such as "Degas On" or "Full scale" are numbered in descending order, starting with index 15.

Index 4 ≤254 Parameter n Block_Type_Name Attributes Block_x Parameter 2 Parameter_1 Parameter_0 16 Operation_1 Public Operation_2 **Operations Public** optional Operation_n optional 0 Private

Block, slot and index assignment

Assignment of the block elements to the slot indices

2.2 Structure of the Cyclic Data Telegrams in Data Exchange Mode

In Data Exchange mode, the DP master class 1 cyclically transmits data from and to all slaves that are connected to the bus.

In this document, data transmitted from the slave to the master are called "input data" and data transmitted from the master to the slave are called "output data".

The input and output data of the BPG402-SP has two logic parts:

- 1) the parameter channel
- 2) the process data channel

There is a number of standard telegrams, consisting of:

- a) the parameter channel only
- b) the process data channel only
- c) both, the parameter and process data channel

The parameter channels allows masters without Profibus DPV1 to access device specific parameters that are not part of the normal cyclic data telegram. For masters with Profibus DPV1, no parameter channel is required.

The input data (transmitted by the BPG402-SP) consists of the 8 bytes of the parameter channel (if there is a parameter channel in the standard telegram) and of up to 15 bytes of process data depending on the selected standard telegram.

1	2	3	В 4	yte 5 6 7 8		Byte 9 23
	_	Para	amete	er Channel		Process Data
Pł	٢E	IND	res.	PWE		
Where: PKE =			=	Parameter Signature V	/alue	≙ Reading or writing com- mand and definition of the slot
	IND = Sub Index			Sub Index		$ riangle ext{Index No. of the index to be}$ read (→ "Block Model")
		res.	=			reserved
		PWE	=	Process Value		≙ Value to be read or written

Output data

Input data

The output data (transmitted by the master) consist of 8 bytes of the parameter channel and up to 10 bytes of process data (control bytes).

			Ву	/te		Byte		
1	2	3	4	5	6	7	8	9 18
	Parameter Channel							Process Data
Pk	ΚE	IND	res.	PWE				

2.2.1 Parameter Channel

The structure of the parameter channel is described in the table below.

The parameter channel (called PKW Interface hereinafter) consists of 8 bytes.

			Ву	/te			
1	2	3	4		6	7	8
PKE		IND	res.		P۷	VE	

The PKW Interface allows reading and writing of slave parameters with a maximum data length of 4 bytes. Strings cannot be read.

The slave generates exactly one response per instruction transmitted by the master. The instruction and response cannot be blocked. This means that exactly one instruction per output telegram can be transmitted to the slave and that exactly one response per input telegram can be transmitted to the master. 4 bytes of actual data can thus be transmitted at a time.

tira47e1 (2005-08) BPG402SPv1.cp

2.2.1.1 PKE Parameter Signature Value

The instruction and response are represented in the first two bytes (PKE) of the parameter channel:

							Bit po	sition							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
AK res.							SI	ot							

Where:	Bits	Meaning
	15 12	AK ≙ Instruction/response signature
	11 8	Reserved
	7 0	Define the slot from which data are read or onto which a

value is to be written

Instruction signature

In Master \Rightarrow Slave communication, the AK field contains the instruction signature of the master.

In Slave \Rightarrow Master communication, the AK field contains the instruction signature of the slave.

AK	Function Master \Rightarrow Slave (Instruction signature)	AK normal	Function Slave \Rightarrow Master (Response signature)	AK error
0	No instruction	0	No response	
1	Read parameter value	1	Transmit parameter value (word)	7 ¹⁾
		2	Transmit parameter value (double word)	
		11	Transmit parameter value (byte)	
2	Write parameter value (data type: word)	1	Transmit parameter value (word)	7 ¹⁾
3	Write parameter value (data type: double word)	2	Transmit parameter value (double word)	7 1)
10	Write parameter value (data type: byte)	11	Transmit parameter value (byte)	7 1)

¹⁾ Instruction cannot be executed (error code)

On the left of the table, the instruction signatures of the master are listed according to their function. On the right of the table, the corresponding normal responses (AK Normal) and error codes (AK Error) transmitted by the slave are listed.

- 1) The master transmits an instruction to the slave and repeats that instruction until it receives a response from the slave.
- The slave keeps transmitting the response to the instruction until the master transmits a new instruction.
- The master marks the end of the first instruction cycle by setting AK to zero. Only after that, a new instruction/response cycle may be started.

The PWE represents the data element to be transmitted.

If a byte is to be transmitted, that byte has to be in position 8 of the parameter channel.

Integers are transmitted with bytes 7 and 8. Double integer and float values are transmitted with bytes 5 \ldots 8.

Instruction – response sequence

2.2.1.2 PWE Parameter (Process Value)

2.2.1.3 Error Code (Error Message)

In the event of a transmission error (AK response signature = 7), the slave transmits an error code in byte positions 7 and 8 (data type: INT16).

Error code	Meaning
0	Undefined slot
1	Parameter not changeable
2	Lower or upper value range limit overflow
3	Index error
5	Data type error
17	Instruction not allowed in this state
18	Other errors
201	Already in requested state
202	Object state conflict

The following diagram shows an example of a data request from a master to a BPG402-SP via parameter channel.

	DP-Master			BPG402-5	SP
	Req	meter uest ent)	AK(IS) = 0 AK(RS) = 0 AK(IS) = 0	Paramete Request (Server)	t
Store _ Data			AK(RS) = 0 $AK (IS) = 1$ $AK(RS) = 0$ $AK (IS) = 1$ $AK(RS) = 0$ $AK (IS) = 1$ $AK(RS) = 1$ $AK(RS) = 1$ $AK(IS) = 0$ $AK(RS) = 0$ $AK(RS) = 0$ $AK(RS) = 0$ $AK(RS) = 0$		Fetch Data

2.3 Cyclic Message Telegrams

The message telegrams listed below are implemented in the gauge. They can be selected according to requirements. When selecting a message telegram, ascertain what output format of the measured value (integer/float) is required and whether a parameter channel is needed or not. The gauge can also be operated in such a way that the master does not transmit any output data to the slave.

Standard telegram	Master ⇔ Slave	Byte	Meaning
1	$M \Rightarrow S$	0	Transition Command
		1	Transition Command Value for Hot Ion Gauges
2	$M \Rightarrow S$	0 7	Parameter Channel
		8	Transition Command
		9	Transition Command Value for Hot Ion Gauges
3	$M \Rightarrow S$	0 7	Parameter Channel
4	$S \Rightarrow M$	0	Exception status
		1	One Of N status extension
		2	One Of N PV selector
		3 4	Process value UINT16
5	$S \Rightarrow M$	0	Exception status
		1	One Of N status extension
		2	One Of N PV selector
		3 6	Process value float
6	$S \Rightarrow M$	0 7	Parameter channel
		8	Exception status
		9	One Of N status extension
		10	One Of N PV selector
		11 12	Process value UINT16
7	$S \Rightarrow M$	0 7	Parameter channel
		8	Exception status
		9	One Of N status extension
		10	One Of N PV selector
		11 14	Process value float

Configuration data

Depending on the standard telegrams used, the respective configuration data have to be transmitted to the gauge during the configuration phase (\rightarrow table on \cong 5).

	tion protocols ar normal control u	402-SP can be transmitted by means of a number of communica- ind corresponding masters. Profibus defines a master class 1 as nit of the slave (typically a PLC) and a master class 2 as configura- unit. The following communication protocols are defined according DPV1 standard.
	MS0 Cvcli	c data traffic between master class 1 and slave
		lic data traffic between master class 1 and slave
		lic data traffic between master class 2 and slave
	In the BPG402-S are organized in ble via acyclic se	SP, all functions that are made available by the gauge via Profibus blocks. Access to the individual parameters of the blocks is possiervices or, for byte, integer and float values, also in cyclic data rameter channel.
Block types	The following blo	ock types are defined in the gauge.
	Device Block	The Device Block contains all data that are required for de- scribing the device and handling its state (status of Device State Machine).
	Transducer Bloc	The physical, process specific functions or interfaces between the BPG402-SP and the process such as current and voltage values are represented in transducer blocks. The following transducer blocks are implemented:
		One of N Vacuum Gauge Transducer Block
		Heat Transfer Vacuum Gauge Transducer Block (Pirani)
		Hot Cathode Ion Gauge Transducer Block (BA)
	Function Block	Application specific values such as pressure values that result from or can be calculated from the values of the transducer block are represented in the function blocks.
		One of N Analog Input Function Block
		Angles Input Expeties Disels Instance 4 Instance 9

• Analog Input Function Block, Instance 1, Instance 2, Instance 3, Instance 4.

3.1 Device Block

The following table lists the services and parameters integrated in the Device Block (\rightarrow Appendix A for abbreviations).

ID	Name	Structure	Data type	Bytes	Access	Value	Store
15	Device Block State	Simple	UINT8	1	1/2_R/W		
16	Block Type	Simple	Octet string	4	1/2_R	1	N
17	Device Type	Simple	Visible string	8	1/2_R	CG	N
18	Standard Revision Level	Simple	Visible string	9	1/2_R	E54-0997	N
19	Device Manufacturer Identifier	Simple	Visible string	20	1/2_R	INFICON AG	Ν
20	Manufacturer Model Number	Simple	Visible string	20	1/2_R	e.g. 353-574	N
21	Software or Firmware Revision Level	Simple	Visible string	8	1/2_R	e.g. 020_1.01	N
22	Hardware Revision Level	Simple	Visible string	8	1/2_R	e.g. 1.0	N
23	Serial Number	Simple	Visible string	30	1/2_R	e.g. 100	N
24	Device Configuration	Simple	Visible string	50	1/2_R	e.g. BPG402-SP	N
25	Device State	Simple	UINT8	1	1/2_R		V
26	Exception Status	Simple	UINT8	1	0_XI 1/2_R		V
27	Exception Detail Alarm	Record	\rightarrow below	-	1/2_R		V
28	Exception Detail Warning	Record	\rightarrow below	-	1/2_R		V
204	Common Exception Detail Alarm 0	Simple	UINT8	1	1/2_R		V
205	Device Exception Detail Alarm 0 3	Struct	Array of 4 bytes	4	1/2_R		V
207	Manufacturer Exception Detail Alarm 0	Simple	UINT8	1	1/2_R		V
208	Common Exception Detail Warning 0	Simple	UINT8	1	1/2_R		V
209	Device Exception Detail Warning 0 3	Struct	Array of 4 bytes	4	1/2_R		V
210	Device Exception Detail Warning 4	Simple	UINT8	1	1/2_R		V
211	Manufacturer Exception Detail Warning 0	Simple	UINT8	1	1/2_R		V

-	Information on the Individual Indices				
3.1.1.1	Block Type ID 16		Parameter contains an the Device Block 1. The		
3.1.1.2	Device Type ID 17	The Device Type Profibus.	e identifies the device ty	pe which is conne	ected to the field bus via
		The Device Type Combination Ga	e of the BPG402-SP ga uge.	uge is "CG", the al	bbreviation of
3.1.1.3	Standard Revision Level ID 18	This parameter describes the version of the "Sensor/Actuator Network Specific Device Model" published by the SEMI [®] (Semiconductor Equipment and Materials International, California), according to which the profile of this device has been developed. The fixed setting of this parameter is "E54-0997".			
3.1.1.4	Device Manufacturer Identifier ID 19	This parameter of	describes the manufactu	urer of the device,	"INFICON AG".
3.1.1.5	Manufacturer Model Number ID 20	-	epresents the part num vailable with different va		
		Gauge	Vacuum connection	Part number]
		BPG402-SP	25 KF	353-574	-
			40 CF	353-575	
3.1.1.6	Software or Firmware Revision Level ID 21		(where xxx is the version		ous option in the following firmware and y.yy is the
3.1.1.7	Hardware Revision Level ID 22	This parameter i	ndicates the hardware v	version of the gaug	ge in the format "1.0".
3.1.1.8	Device Configuration ID 24	This parameter i	ndicates the device nan	ne.	
3.1.1.9	Device State ID 25	This parameter indicates the status of the gauge. Due to the structure of the Device State Machine, the following statuses are possible:			
		Parameter valu	e Status		
		0	Undefined		
		1	Self testing		
		2	Idle		
		3	Self test exception		
		4	Executing		
		5	Abort	1	

6

The device statuses are described in detail in section "Device Block, Device Behavior".

Critical fault

3.1.1.10 Exception Status ID 26

The Exception Status describes the alarm and warning states of the gauge in an "Expanded error output format".

A difference is made between warnings and errors.

Alarms and errors are divided into three groups (\rightarrow sections "Exception Detail Alarm" and "Exception Detail Warning" for details):

ALARM / Warning Device Common	For errors that occur independently of the type of device used, e.g. supply error, RAM, ROM, or EEPROM error.
ALARM / Warning Device Specific	For device specific errors (e.g. filament rupture (Pirani) or cathode rupture (BA)).
 ALARM / Warning Manufacturer Specific 	For errors defined by the manufacturer that are not mentioned in the standard.

In each of the above groups, there are several error or warning conditions. The individual fields are presented in the "Exception Detail Alarm" and "Exception Detail Warning". If an error message occurs in "Exception Detail Alarm" or "Exception Detail Warning", the corresponding bit is set in the Exception Status. Therefore, if bits 0 ... 6 of the Exception Status are on "0" there is no warning message pending.

If a bit is set, the actual error can be read in the corresponding group.

The Exception Status is output in cyclic data and informs on the current error status using only one byte. If an error occurs, the current error status can be read via acyclic services or in cyclic data exchange via the parameter channel. This ensures that while the current error status is always available in the cyclic data, no unnecessary data overhead is transmitted.

Bit	Function	Meaning
0	ALARM, device common	The bit is set if an error of the Alarm Device Common group is detected.
1	ALARM, device specific	The bit is set if an error of the Alarm Device Specific group is detected.
2	ALARM, manufacturer specific	The bit is set if an error of the Alarm Manufacturer Specific group is detected.
3	-	-
4	WARNING, device common	The bit is set if an error of the Warning Device Common group is detected.
5	WARNING, device specific	The bit is set if an error of the Warning Device Specific group is detected.
6	WARNING, manufacturer specific	The bit is set if an error of the Warning Manufacturer Common group is de- tected.
7	Expanded Format	Is constantly on "1" and marks the use of the expanded error output format.

3.1.1.11 Exception Detail Alarm ID 27

If, in the Exception Status, one of the bits 0 \dots 2 is set, the current error can be read in the "Exception Detail Alarm" parameter. The "Exception Detail Alarm" parameter consists of a total of 10 bytes that inform on the error status of the gauge.

Due to the use of the expanded error output format, these bytes have the following structure:

Byte No	Name	Description	Value
0	Common Exception Detail Size	Indicates the number of subse- quent bytes that contain the Common Exception Detail Alarm.	2
1	Common Exception Detail 0	Contains current error messages from the Common Exception Detail Alarm group.	Depending on error status
2	Common Exception Detail 1	not supported	0
3	Device Exception Detail Size	Indicates the number of subse- quent bytes that contain the Device Exception Detail Alarm.	4
4	Device Exception Detail 0 (Pirani error data)	This error information from the Device Exception Detail Alarm group refers to Pirani.	Depending on error status
5	Device Exception Detail 1 (Pirani error data)	This error information from the Device Exception Detail Alarm group refers to Pirani.	Depending on error status
6	Device Exception Detail 2 (BA error data)	This error information from the Device Exception Detail Alarm group refers to BA.	Depending on error status
7	Device Exception Detail 3 (BA error data)	This error information from the Device Exception Detail Alarm group refers to BA.	Depending on error status
8	Manufacturer Exception Detail Size	Indicates the number of subse- quent bytes that contain the Manufacturer Exception Detail Alarm.	1
9	Manufacturer Exception Detail 0	Contains current error messages from the Manufacturer Exception Detail Alarm group.	Depending on error status

Common Exception Detail Alarm

Bit	Common Exception Detail 0		
0	0		
1	0		
2	EPROM exception		
3	EEPROM exception		
4	RAM exception		
5	0		
6	0		
7	0		

Bit	Common Exception Detail 1
0	0
1	0
2	0
3	0
4	0
5	0
6	0
7	0

Device Exception Detail Alarm

Bit	Device Exception Detail 0					
	Referring to Pirani					
0	0					
1	0					
2	0					
3	0					
4	0					
5	0					
6	0					
7	0					
This byte is a copy of Sensor Alarm byte 0 of Pirani Transducer Block.						

Bit	Device Exception Detail 2				
	Referring to BA				
0	Sensor filament 1 Alarm				
1	Sensor filament 2 Alarm				
2	0				
3	0				
4	0				
5	0				
6	0				
7	0				
This byte is a copy of Sensor Alarm byte 0 of BA Transducer Block.					

Bit	Device Exception Detail 1			
	Referring to Pirani			
0	0			
1	Electronics / sensor error			
2	0			
3	0			
4	0			
5	0			
6	0			
7	0			
This byte is a copy of Sensor Alarm byte 1 of Pirani Transducer Block.				

Bit	Device Exception Detail 3 Referring to BA			
	Releting to BA			
0	0			
1	Electronics / sensor error			
2	0			
3	0			
4	0			
5	0			
6	0			
7	0			
This byte is a copy of Sensor Alarm byte 1 of BA Transducer Block.				

Manufacturer Exception Detail Alarm 0

Manufacturer Exception Detail 0 is set to "1", if there is an internal communication error in the gauge.

3.1.1.12 Exception Detail Warning ID 28

If, in the Exception Status, one of bits 4 ... 6 is set, the current warning can be read in the parameter "Exception Detail Warning". The Exception Detail Warning parameter consists of a total of 11 bytes that inform on the error status of the gauge.

Due to the use of the expanded error output format, these bytes have the following structure:

Byte No	Name	Description	Value	
0	Common Exception Detail Size	Indicates the number of subse- quent bytes that contain the Common Exception Detail Warning.	2	
1	Common Exception Detail 0	Contains current error messages from the Common Exception Detail Warning group.	Depending on warning status	
2	Common Exception Detail 1	Contains current error messages from the Common Exception Detail Warning group.	Depending on warning status	
3	Device Exception Detail Size	ption Indicates the number of subsequent bytes that contain the Device Exception Detail Warning.		
4	Device Exception Detail 0	One of N Status Extension.	Depending on warning status	
5	Device Exception Detail 1 (Pirani)	This error information from the Device Exception Detail Warning group refers to Pirani.	Depending on warning status	
6	Device Exception Detail 2 (Pirani)	This error information from the Device Exception Detail Warning group refers to Pirani.	Depending on warning status	
7	Device Exception Detail 3 (BA)	This error information from the Device Exception Detail Warning group refers to BA.	Depending on warning status	
8	Device Exception Detail 4 (BA)	This error information from the Device Exception Detail Warning group refers to BA.	Depending on warning status	
9	Manufacturer Exception Detail Size	Indicates the number of subse- quent bytes that contain the Manufacturer Exception Detail Warning.	1	
10	Manufacturer Exception Detail	Contains current error messages from the Manufacturer Exception Detail Warning group.	Depending on warning status	

Common Exception Detail Warning

Bit	Common Exception Detail 0			
0	0			
1	0			
2	EPROM exception			
3	EEPROM exception			
4	RAM exception			
5	0			
6	0			
7	0			

Bit	Common Exception Detail 1
0	0
1	0
2	0
3	0
4	0
5	0
6	0
7	0

The warning bits are set in the same way as the error bits because here, warnings have the same meaning as errors.

Device Exception Detail Warning

Bit	Device Exception Detail 0						
0	Bit set if						
-	Reading Invalid						
1	Bit set if						
	Device Overrange						
2	Bit set if						
	Device Underrange						
3	0						
4	0						
5	0						
6	0						
7	0						
Va	s byte is a copy of the One Of N cuum Gauge Transducer Block.						
Bit	Device Exception Detail 1						
_	Referring to Pirani						
0	0						
1	0						
2	0						
3	0						
4	0						
5	0						
6	0						
7	0						
	This byte is a copy of Sensor Warning byte 0 of the Pirani Transducer Block.						
Bit	Device Exception Detail 3 Referring to BA						
0	Sensor filament 1 Warning						
1	Sensor filament 2 Warning						
2	0						
3	0						
4	0						
5	0						
6	0						
7	0						
	This byte is a copy of Sensor ning byte 0 of the BA Transducer Block.						

Bit	Device Exception Detail 2			
	Referring to Pirani			
0	0			
1	Electronics / sensor warning			
2	0			
3	0			
4	0			
5	0			
6	0			
7	0			
This byte is a copy of Sensor Warning byte 1 of the Pirani Transducer Block.				
Bit	•			
	Referring to BA			
0	Referring to BA 0			
	Referring to BA			
0	Referring to BA 0			
0	Referring to BA 0 Electronics / sensor warning			
0 1 2	Referring to BA 0 Electronics / sensor warning 0			
0 1 2 3	Referring to BA 0 Electronics / sensor warning 0 Pressure too high for degas			
0 1 2 3 4	Referring to BA 0 Electronics / sensor warning 0 Pressure too high for degas 0			
0 1 2 3 4 5	Referring to BA 0 Electronics / sensor warning 0 Pressure too high for degas 0 0			

Manufacturer Exception Detail Warning 0

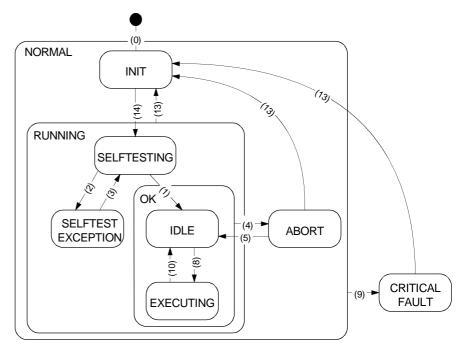
Manufacturer Exception Detail 0 is set to "1", if there is an internal communication error in the gauge.

The following parameters are copies of the ID 27 and ID 28. They are used only if you want to access these parameters by the parameter channel.

- 3.1.1.13
 Copy Common Exception
 This parameter corresponds to the Common Exception Detail Alarm of the Exception Detail Alarm (ID 27).

 ID 204
 ID 204
- 3.1.1.14 Copy Device Exception Detail Alarm 0 ... 3 ID 205
- 3.1.1.15 Copy Manufacturer Exception Detail Alarm 0 ID 207
- 3.1.1.16 Copy Common Exception Detail Warning 0 ID 208
- 3.1.1.17 Copy Device Exception Detail Warning 0 ... 3 ID 209
- 3.1.1.18 Copy Device Exception Detail Warning 4 ID 210
- 3.1.1.19 Copy Manufacturer Exception Detail Warning 0 ID 211

- This parameter corresponds to the Device Exception Detail Alarm Byte 0 \dots 3 of the Exception Detail Alarm (ID 27).
- This parameter corresponds to the Manufacturer Exception Detail Alarm Byte 0 of the Exception Detail Alarm (ID 27).
- This parameter corresponds to the Common Exception Detail Warning Byte 0 of the Exception Detail Warning (ID 28).
- This parameter corresponds to the Device Exception Detail Warning Byte 0... 3 of the Exception Detail Warning (ID 28).
- This parameter corresponds to the Device Exception Detail Warning Byte 4 of the Exception Detail Warning (ID 28).


This parameter corresponds to the Manufacturer Exception Detail Warning Byte 0 of the Exception Detail Warning (ID 28).

3.1.2 Device Block, Device Behavior

Cyclic data traffic

The BPG402-SP behaves as described in the status diagram below.

After the start, the gauge independently runs through the INIT and SELFTESTING status and eventually changes to the IDLE status (if there is no error) or to the SELFTEST_EXCEPTION status (if there is a gauge error).

When data traffic is taken up, a difference has to be made between cyclic and acyclic data traffic.

As soon as cyclic data interchange is taken up, the gauge automatically changes to the EXECUTING status.

Acyclic data traffic In acyclic data traffic, a START service has to be transmitted to bring the gauge to the EXECUTING status.

Device statuses

Status name	Description				
NORMAL	The communication interface can respond to com- mands. All defined blocks of the gauge exist.				
RUNNING	All block instances are initialized and the individual parameters have their initial or default values.				
SELFTESTING	In this status, the gauge performs a selftest.				
IDLE	All blocks defined in the gauge are initialized and the complete hardware has been tested and found free of errors. The value defined in the Safe State is output as measured value.				
SELFTEST EXCEPTION	During the self test, an error has been detected. The gauge has changed to the SELFTEST EXCEPTION status. The cause of the error can be found in the attributes Device Exception Detail Alarm/Warning of the Device Block. The value defined in the Safe State is output as measured value.				
EXECUTING	The gauge functions normally and outputs the meas- ured value.				
ABORT	The Device Block is in the ABORT status. The gauge specific measurement functions are not carried out.				
CRITICAL FAULT	A device error has occurred. The gauge specific measurement functions are not carried out. The value defined in the Safe State is output as meas- ured value.				

3.1.2.1 Device Block State Command

There are a number of special commands for bringing the gauge into a status it does not automatically go to.

ID	Na	me	Structure	Data type	Bytes	Access	Store	Range	
15	15 Device Block Simp State Command		Simple	UINT8	1	1/2_R/W	Ν	\rightarrow below	
ID Name value			Description						
0)	Inactive		No action.					
1		Reset		Used for reinitializing the device.					
2		Abort		Brings the device to the ABORT status.					
3	5	Recover	Used for bringing the device from the ABORT status into the Recovered State ≙ IDLE.				ORT		
4	÷	Execute	Brings the unit to the EXECUTING status, in whi the gauge functions normally. As soon as cyclic data traffic is initialized, this status command is executed automatically.				s cyclic		
5		Stop		Brings the gauge to the IDLE status.					
6	;	Perform Diagnostic		Stops the ru	nning act	ivity and st	arts SEL	FTEST.	

3.2 Analog Input Block

All gauge functions of the BPG402-SP are described in the Analog Input Block. Since the gauge includes two measuring systems, there are also two Analog Input Block Instances representing the Pirani and the ionization measuring part (BA) respectively.

3.2.1 One Of N Analog Input Function Block / SLOT 1

ID	Name ¹⁾	Structure	Data type	Bytes	Access	Store
15	Al Block Adjust Command	Simple	UINT8	1	1/2_W	-
16	Block Type	Simple	Octet string	4	2_R	Ν
46	Channel Instance Selector	Simple	UINT8	1	1/2_R/W	Ν
47	PV Selector	Simple	UINT8	1	0_XI 1/2_R	V

¹⁾ The above parameters are described below.

3.2.1.1	Al Block Adjust Command ID 15	To start "Full Scale Adjust" of the gauge, the value "1" has to be entered.	
3.2.1.2	Block Type ID 16	The value of the Block Type ID is "3" (\rightarrow table in Appendix A).	
3.2.1.3	Channel Instance Selector ID 46	The gauge has two instances of the Analog Input Function Block and two instances of the Vacuum Gauge Transducer Block, or one instance of each block per measuring system (Pirani and BA). There are two additional instances for describing the thresholds of the switching functions (\rightarrow section "Analog Sensor Input Function Block", Instances 3 and 4).	
		However, there is only one address range for both, querying and setting the corre- sponding parameters. The Parameter Channel Instance Selector is used for de- fining the parameters that are written into the address range.	
		If the Parameter Channel Instance Selector is set to "1", the attributes of Instance 1 are mapped into that address range and can be written or read by addressing Slot \Rightarrow Instance \Rightarrow Parameter-ID.	
3.2.1.3	PV Selector ID 47	The PV Selector is determined by the gauge and defines the Analog Input Functio Block Instance from which the measured value is copied into the cyclic output data telegrams. Therefore, the value output in the cyclic data is always the measured value of the active instance, i.e. the one that is currently measuring. While the gauge is measuring in the BA range, the measured value of the ionization vacuum meter is output in the cyclic data and while the gauge is measuring in the Pirani range, the measured value of the Pirani is output.	
		The measured values of Instances 3 and 4 (thresholds of the switching functions) are not output in the cyclic data.	
		The pressure ranges, in which measurement is performed either by the Pirani or by the BA measuring part, and are thus called "active", are indicated below:	

Pressure [mbar]	PV Selector
5.5×10 ⁻³ < p ≤ 1000	Pirani
5×10 ⁻¹⁰ -2	BA

In the pressure range $5.5 \times 10^{-3} \dots 2 \times 10^{-2}$ mbar an averaging of the two corresponding measurement principles is done. The active instance in this pressure range is Pirani.

Measuring range

3.2.2 Analog Sensor Input Function Block SLOT 1 / Instance 1

Instance 1 of the Analog Sensor Input Function Blocks describes the functionality of the Pirani measuring part of the gauge.

The following attributes are supported:

ID	Name	Structure	Data type	Bytes	Access	Store
15	Al Block Adjust Command	Record		-	2_W	
19	Process Value (PV)	Simple	According to Data Type value (Parameter 21)	-	0_XI 1/2_R	V
20	Status	Simple	UINT8	1	0_XI 1/2_R	V
21	Data Type	Simple	UINT8	1	2_R/W	Ν
22	Data Units	Simple	UINT16	2	2_R/W	N
23	Reading Valid	Simple	Boolean	1	1/2_R	V
24	Full Scale	Simple	According to Data Type value (Parameter 21)	-	1/2_R	N
39	Safe State	Simple	Unsigned8	1	1/2_R/W	Ν
40	Safe Value	Simple	According to Data Type value (Parameter 21)	-	1/2_R/W	N
44	Overrange	Simple	According to Data Type value (Parameter 21)	-	1/2_R	N
45	Underrange	Simple	According to Data Type value (Parameter 21)	-	1/2_R	N

3.2.2.1 Process Value ID 19

The Process Value contains the measured value of the Pirani Device Instance in the currently selected data unit (ID 22) and in the selected data type (ID 21). If the device is not in the EXECUTING State (ID 25, Device Block), the value defined in the Safe State is output.

Values output in the data unit COUNTS can be converted into a pressure value by means of the following formulas:

Calculation of the pressure (PV is the abbreviation used for Process Value):

PV_{mbar}	=	10 ^{(COUNTS / 2000) - 12.5}
PV_{Torr}	=	$0.75006168 \times \text{PV}_{\text{mbar}}$
PV_{Micron}	=	10 ⁻³ × PV _{Torr}
PV_{Pa}	=	100 × PV _{mbar}

3.2.2.2 Status ID 20 This parameter remains on "0".

3.2.2.3 Data Type ID 21

Two data types are supported: Float and Integer16.

In cyclic data exchange, the data type cannot be modified. After the gauge is switched on, the value stored in the EEPROM is loaded. The data type setting can only be modified when the gauge is in the IDLE status. By defining the configuration data for cyclic data exchange (selection of standard telegrams), the data type used in the selected standard telegram is taken over. All settings previously made in acyclic data traffic are thus overwritten.

If the data type is set in one instance, that data type setting applies to all instances. Likewise, when a standard telegram is selected, the data type used by that standard telegram will be valid for all instances:

Coding	Data type
3	Integer16
8	Float (default)

3.2.2.4 Data Unit ID 22

The gauge supports the following pressure units:

Coding (dec)	Data type	
1001	COUNTS	
1301	Torr	
1302	mTorr (Micron)	
1308	mbar	
1309	Pascal	

For safety reasons, it is not possible to change the pressure unit while the gauge is cyclically interchanging data with a DP/V0 master.

The data unit setting can only be modified when the gauge is in the IDLE status.

In cyclic data traffic, the data unit must be set in the User Parameter Data. All settings previously made in acyclic data traffic are overwritten (\rightarrow section "User Parameter Data").

If the data unit is set in one instance, that data unit setting applies to all instances. Likewise, the data unit setting made in the User Parameter Data is valid for all instances.

3.2.2.5 Reading Valid ID 23

This parameter indicates that the pressure reading is within a valid range. It is set to "1" if:

- The gauge is in the EXECUTING status.
- There is no error
- The measured value is lower than the overrange value and higher than the underrange value.

```
P
```

If this value is set to zero, the pressure reading is not valid. In such a case, either check Exception Status (ID 26, Device Block) to find out whether there is an error or check One Of N Status Extension (ID 120, One Of N Vacuum Gauge Transducer Block) to find out whether the measured value is out of the specified measuring range (overrange or underrange mode).

3.2.2.6 Full Scale ID 24

This parameter contains the valid maximum value of the pressure reading in the currently selected data unit and data type.

Pressure unit	Full scale
COUNTS	31000
Torr	750.06168
mTorr (Micron)	750061.68
mbar	1000
Pascal	100000

3.2.2.7 Safe State ID 39

When the gauge is not in the EXECUTING status (ID 25, Device Block) or if there is a device error, a value defined by Safe State is output as pressure value:

Safe State	Coding	PV behavior
Zero	0	The Process Value (measured value ID 19) is set to 0.
Full Scale	1	The Process Value (measured value ID 19) is set to the full scale value (ID 24).
Hold Last Value	2	The Process Value is set to the last valid value obtained in the EXECUTING status.
Use Safe Value	3	The Process Value (measured value ID 19) is set to the Safe Value (ID 40).

3.2.2.8 Safe Value ID 40

The Safe Value is the value output with the Process Value parameter (ID 19) when an error occurs or the gauge goes to the NOT EXECUTING status. If this value is set to zero, it will remain on zero when the data unit is changed.

3.2.2.9 Overrange ID 44

Overrange is the highest valid measured value at which Reading Valid is still on "1".

Pressure unit	Overrange
COUNTS	31000
Torr	750.06168
mTorr (Micron)	750061.68
mbar	1000
Pascal	100000

3.2.2.10 Underrange ID 45

Underrange is the lowest valid measured value at which Reading Valid is still on "1".

Pressure unit	Underrange
COUNTS	20480
Torr	4.12534×10 ⁻³
mTorr (Micron)	4.12534
mbar	5.5×10 ⁻³
Pascal	0.55

3.2.2.11 Al Block Adjust

Command (Pirani) ID 15 The parameter controls zero point and fullscale adjustments of the Pirani.

Byte	Name	Structure	Data type	Bytes	Access
0	State Command	Simple	UINT8	1	1/2_W

State Command Name		Meaning	
0	Zero Adjust	Pirani zero point adjustment	
1	Gain Adjust	Pirani fullscale adjustment	

3.2.3 Analog Sensor Input Function Block SLOT 1 / Instance 2

Instance 2 of the Analog Sensor Input Function Block describes the functionality of the BA measuring part of the gauge.

ID	Name	Structure	Data type	Bytes	Access	Store
19	Process Value (PV)	Simple	According to Data Type value (parameter 21)	-	0_XI 1/2_R	V
20	Status	Simple	UINT8	1	0_XI 1/2_R	V
21	Data Type	Simple	UINT8	1	2_R/W	Ν
22	Data Units	Simple	UINT16	2	2_R/W	Ν
23	Reading Valid	Simple	Boolean	1	1/2_R	V
24	Full Scale	Simple	According to Data Type value (parameter 21)	-	1/2_R	Ν
39	Safe State	Simple	UINT8	1	1/2_R/W	Ν
40	Safe Value	Simple	According to Data Type value (parameter 21)	-	1/2_R/W	Ν
44	Overrange	Simple	According to Data Type value (parameter 21)	-	1/2_R	Ν
45	Underrange	Simple	According to Data Type value (parameter 21)	-	1/2_R	Ν

In Instance 2, the same attributes as in Instance 1 are supported:

3.2.3.1 Process Value ID 19

The Process Value contains the measured value of the BA Device Instance in the currently selected data unit (ID 22) and in the selected data type (ID 21). If the device is not in the EXECUTING status (ID 25, Device Block), the value defined in the Safe State is output.

Values output in the data unit COUNTS can be converted into a pressure value by means of the following formulas:

Calculation of the pressure (PV is the abbreviation used for Process Value):

PV_{mbar}	=	10 ^{(COUNTS / 2000) - 12.5}	
PV _{Torr}	=	$0.75006168 \times PV_{mbar}$	
PV _{Micron}	=	$10^{-3} \times PV_{Torr}$	
PV_{Pa}	=	100 × PV _{mbar}	

3.2.3.2 Status ID 20

3.2.3.3 Data Type ID 21

Two data types are supported: Float and Integer16.

This parameter is remains on "0".

In cyclic data traffic, the data type cannot be modified. After the gauge is switched on, the value stored in the EEPROM is loaded. The data type setting can only be modified when the gauge is in the IDLE status. By defining the configuration data for cyclic data traffic (selection of standard telegram), the data type used in the selected standard telegram is taken over. All settings previously made in acyclic data traffic are thus overwritten.

If the data type is set in one instance, that data type setting applies to all instances. Likewise, when a standard telegram is selected, the data type used by that standard telegram will be valid for all instances.

Coding	Data type
3	Integer16
8	Float (default)

3.2.3.4 Data Unit ID 22

The gauge supports the following pressure units:

Coding (dec)	Pressure unit
1001	COUNTS
1301	Torr
1302	mTorr (Micron)
1308	mbar
1309	Pascal

For safety reasons, it is not possible to change the pressure unit while the gauge is cyclically interchanging data with a DP/V0 master.

The data unit setting can only be modified when the gauge is in the IDLE status.

In cyclic data traffic, the data unit must be set in the User Parameter Data. All settings previously made in acyclic data traffic are overwritten (\rightarrow section "User Parameter Data").

If the data unit is set in one instance, that data unit setting applies to all instances. Likewise, the data unit setting made in the User Parameter Data is valid for all instances.

3.2.3.5 Reading Valid ID 23

This parameter indicates that the pressure reading is within a valid range. It is set to "1" if:

- The gauge is in the EXECUTING status.
- There is no error
- The measured value is lower than the overrange value and higher than the underrange value.

-	_		
~	1		\neg
~	Ł	5	
		⊐	

If this value is set to zero, the pressure reading is not valid. In such a case, either check Exception Status (ID 26, Device Block) to find out whether there is an error or check One Of N Status Extension (ID 120, One Of N Vacuum Gauge Transducer Block) to find out whether the measured value is out of the specified measuring range (overrange or underrange mode).

3.2.3.6 Full Scale ID 24

This parameter contains the valid maximum value of the pressure reading in the currently selected data unit and data type.

Pressure unit	Full scale
COUNTS	21602
Torr	1.5×10 ⁻²
mTorr (Micron)	15
mbar	2×10 ⁻²
Pascal	2

3.2.3.7 Safe State ID 39

When the gauge is not in the EXECUTING state (ID 25, Device Block) or if there is a device error, a value defined by Safe State is output as pressure value:

Safe State	Coding	PV behavior
Zero	0	The Process Value (measured value ID 19) is set to 0.
Full Scale	1	The Process Value (measured value ID 19) is set to the full scale value (ID 24).
Hold Last Value	2	The Process Value is set to the last valid value obtained in the EXECUTING status.
Use Safe Value	3	The Process Value (measured value ID 19) is set to the Safe Value (ID 40).

3.2.3.8 Safe Value ID 40

The Safe Value is the value output with the Process Value Parameter (ID 19) when an error occurs or the gauge goes to the NOT EXECUTING status. If this value is set to zero, it will remain on zero when the data unit is changed.

3.2.3.9 Overrange ID 44

Overrange is the highest valid measured value at which Reading Valid is still on "1".

Pressure unit	Overrange
COUNTS	21602
Torr	1.5×10 ⁻²
mTorr (Micron)	15
mbar	2×10 ⁻²
Pascal	2

3.2.3.10 Underrange ID 45

Underrange is the lowest valid measured value at which Reading Valid is still on "1".

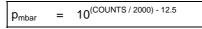
Pressure unit	Underrange
COUNTS	6398
Torr	3.7503×10 ⁻¹⁰
mTorr (Micron)	3.7503×10 ⁻⁷
mbar	5.0×10 ⁻¹⁰
Pascal	5.0×10 ⁻⁸

NFICON

3.2.4 Analog Sensor Input Function Block SLOT 1 / Instance 3, 4

Instance 3 and 4 of the Analog Sensor Input Function Block describe the functionality of the threshold potentiometers used to set the gauges switching functions ("Setpoint A and B, $\rightarrow \square$ [3]).

Instance	Switching Function ("Setpoint")
3	А
4	В


ID	Name	Structure	Data type	Bytes	Access	Store
19	Process Value (PV)	Simple	According to Parameter Data Type	-	1/2_R	V
20	Status	Simple	UINT8	1	1/2_R	V
21	Data Type	Simple	UINT8	1	2_R/W	Ν
22	Data Units	Simple	UINT16	2	2_R/W	Ν
23	Reading Valid	Simple	Boolean	1	1/2_R	V

3.2.4.1 Process Value ID 19

The Process Value contains the current setting of the threshold potentiometers for "Setpoint A" and "Setpoint B" in the currently selected data unit (ID 22) and data type (ID 21).

If the pressure drops below the set threshold, the relay is closed. If after that, the pressure rises above that threshold with a hysteresis of 10%, the relay is opened again ($\rightarrow \square$ [3]).

Values output in the pressure unit COUNTS can be converted into a pressure value by means of the following formulas:

The threshold voltages of the Setpoint potentiometer can be converted into a pressure value by means of the following formulas:

p _{mbar} =	10 ^{(U - 7.75) / 0.75}
---------------------	---------------------------------

Where: U is the threshold voltage (0 ... +10 V) of the corresponding Setpoint (A, B), measured at the D-Sub connector (sensor cable connector) of the gauge ($\rightarrow \square$ [3]).

3.2.4.2 Status ID 20

This parameter is remains on "0".

3.2.4.3 Data Type ID 21

Two data types are supported: Float and Integer16.

In cyclic data traffic, the data type cannot be modified. After the gauge is switched on, the value stored in the EEPROM is loaded. The data type setting can only be modified when the gauge is in the IDLE status. By defining the configuration data for cyclic data traffic (selection of standard telegram), the data type used in the selected standard telegram is taken over. All settings previously made in acyclic data traffic are thus overwritten.

If the data type is set in one instance, that data type setting applies to all instances. Likewise, when a standard telegram is selected, the data type used by that standard telegram will be valid for all instances.

Coding	Data type		
3	Integer16		
8	Float (default)		

3.2.4.4 Data Unit ID 22

The gauge supports the following pressure units:

Coding (dec)	Pressure unit
1001	COUNTS
1301	Torr
1302	mTorr (Micron)
1308	mbar
1309	Pascal

For safety reasons, it is not possible to change the pressure unit while the gauge is cyclically interchanging data with a DP/V0 master. The data unit setting can only be modified when the gauge is in the IDLE

status.

In cyclic data traffic, the data unit must be set in the User Parameter Data. All settings previously made in acyclic data traffic are overwritten (\rightarrow section "User Parameter Data").

If the data unit is set in one instance, that data unit setting applies to all instances. Likewise, the data unit setting made in the User Parameter Data is valid for all instances.

3.2.4.5 Reading Valid ID 23

This parameter is set to "1".

3.3 Transducer Block

3.3.1 One Of N Vacuum Gauge Transducer Block / SLOT 1

3.3.1.1 One Of N Status Extension

ID	Name	Structure	Data type	Bytes	Access	Store
120	One Of N Status Extension	Simple	UINT8	1	1/2_R	V

This parameter indicates whether the overrange or underrange of the gauge is exceeded.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	0	0	0	Underrange Exceeded	Overrange Exceeded	Reading Invalid

If the gauge is operated in its overrange or underrange ($p < 5 \times 10^{-10}$ mbar or p > 1000 mbar), the corresponding bit and additionally the bit "Reading Invalid" is set.

If an error occurs, the bit "Reading Invalid" as well as the corresponding error bits in Device Block (ID 26, 27, 28 Device Block) are set.

3.3.2 Heat Transfer Vacuum Gauge Transducer Block / SLOT 1 / Instance 1

ID	Name	Structure	Data type	Bytes	Access	Store
101	Block Type	Simple	Octet string	4	2_R	Ν
102	Status Extension	Simple	UINT8	1	1/2_R	V
103	Sensor Alarm	Struct	Array of 2 bytes	2	1/2_R	V
104	Sensor Warning	Struct	Array of 2 bytes	2	1/2_R	V

3.3.2.1 Block Type ID 101

According to the table in Appendix A, the Block Type ID has the value "13".

3.3.2.2 Status Extension ID 102

This parameter indicates whether the overrange or underrange of the Heat Transfer Vacuum Gauge device instance (Pirani) is exceeded.

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	F	Reserve	d		Underrange Exceeded ¹⁾	Overrange Exceeded ²⁾	Reading Invalid ³⁾

- ¹⁾ Underrange: The parameter is set to "1", if the pressure value is below the value defined in ID 45 (Analog Input Function Block Instance 1).
- ²⁾ Overrange: The parameter is set to "1", if the pressure value is above the value defined in ID 44 (Analog Input Function Block Instance 1).
- ³⁾ Reading Invalid: The parameter is set to "1", if "Reading Valid" ID 23 (Analog Input Function Block Instance 1) is set to"0".

If the instance is operated in its overrange or underrange, the corresponding bit and additionally the bit "Reading Invalid" is set.

If an error occurs, the bit "Reading Invalid" as well as the corresponding error bits in Device Block (ID 26, 27, 28 Device Block) are set.

3.3.2.3 Sensor Alarm ID 103

This parameter indicates the detectable errors occurring in connection with the Pirani measuring part.

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	0	0	0	0	0	0	0	0
Byte 1	0	0	0	0	0	0	Electronics Failure 1)	0

¹⁾ Electronics Failure includes a sensor error.

The Sensor Alarm bits defined here are copied into the Device Block ID 27 in the "Device Exception Detail Alarm" range of the Pirani measuring part.

3.3.2.4 Sensor Warning ID 104

This parameter indicates the detectable warnings occurring in connection with the Pirani measuring part.

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	0	0	0	0	0	0	0	0
Byte 1	0	0	0	0	0	0	Electronics Warning	0

The Sensor Warning bits defined here are copied into the Device Block ID 28 in the "Device Exception Detail Warning" range of the Pirani measuring part.

3.3.3 Hot Cathode Ion Gauge Transducer Block / SLOT 1 / Instance 2

ID	Name	Structure	Data type	Bytes	Access	Store
14	Hot Cathode Block State Command	Rec		1	1/2_W	
101	Block Type	Simple	Octet string	4	2_R	Ν
102	Status Extension	Simple	UINT8	1	1/2_R	V
103	Sensor Alarm	Struct	Array of 2 bytes	2	1/2_R	V
104	Sensor Warning	Struct	Array of 2 bytes	2	1/2_R	V
105	Emission Status	Simple	Boolean	1	1/2_R/W	V
106	Emission Current	Simple	FLOAT	4	1/2_R/W	Ν
108	Active Filament	Simple	Boolean	1	1/2_R/W	Ν
109	Degas Status	Simple	Boolean	1	1/2_R	V
116	Active Degas Filament	Simple	UINT8	1	1/2_R	V
119	Mode Filament Selection (Filament User Mode)	Simple	Boolean	1	2_R/W	Ν
201	Emission User Mode State	Simple	Boolean	1	1/2_R	V

3.3.3.1 Block Type ID 101

3.3.3.2 Status Extension ID 102

According to the table in Appendix A, the Block Type ID has the value "16".

This parameter indicates that the overrange or underrange of the Hot Cathode Ion Gauge instance is exceeded.

Bit 7	Bit 6	Bit 5	5 Bit 4 Bit 3		Bit 2	Bit 1	Bit 0
	F	Reseve	d		Underrange Exceeded ¹⁾	Overrange Exceeded ²⁾	Reading Invalid ³⁾

- ¹⁾ Underrange: The parameter is set to "1", if the pressure value is below the value defined in ID 45 (Analog Input Function Block Instance 2).
- ²⁾ Overrange: The parameter is set to "1", if the pressure value is above the value defined in ID 44 (Analog Input Function Block Instance 2).
- ³⁾ Reading Invalid: The parameter is set to "1", if "Reading Valid" ID 23 (Analog Input Function Block Instance 2) is set to"0".

If the instance is operated in its overrange or underrange, the corresponding bit and additionally the bit "Reading Invalid" is set.

If an error occurs, the bit "Reading Invalid" as well as the corresponding error bits in Device Block (ID 26, 27, 28 Device Block) are set.

3.3.3.3 Sensor Alarm ID 103

This parameter indicates the detectable errors occurring in connection with the BA measuring part.

	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit 1	Bit 0
Byte 0	0	0	0	0	0	0	Sensor Filament 2 Alarm ¹⁾	Sensor Filament 1 Alarm ¹⁾
Byte 1	0	0	0	0	0	0	Electronics Failure ²⁾	0

¹⁾ Meaning \rightarrow below, table Filament status.

²⁾ Electronics Failure includes a sensor error.

The Sensor Alarm bits defined here are copied into the Device Block ID 27 in the "Device Exception Detail Alarm" range of the BA measuring part.

3.3.3.4 Sensor Warning ID 104

Filament status

This parameter indicates the detectable warnings occurring in connection with the BA measuring part.

	Bit 7 4	Bit 3	Bit 2	Bit 1	Bit 0
Byte 0	0	0	0	Sensor Filament 2 Warning 1)	Sensor Filament 1 Warning 1)
Byte 1	0	Pressure too high for degas ²⁾	0	Electronics Warning	0

¹⁾ Meaning \rightarrow below, table Filament status.

²⁾ Pressure too high for degas: the bit is set if the pressure value is $>7.2\times10^{-6}$ mbar during a degas command. The bit is reset if the pressure value drops below 7.2×10^{-6} mbar.

The Sensor Warning bits defined here are copied into the Device Block ID 28 in the "Device Exception Detail Warning" range of the BA measuring part.

Byte 0 of Sensor Alarm and Sensor Warning represents the filament status of the gauge.

Bit 1	Bit 0	Filament status	Sensor Filament 1 Warning	Sensor Filament 2 Warning	Sensor Filament 1 Alarm	Sensor Filament 2 Alarm
0	0	both filaments OK	0	0	0	0
0	1	filament 1 interrupted, filament 2 OK	1	0	0	0
1	0	filament 1 OK, Filament 2 interrupted	0	1	0	0
1	1	Filament 1 interrupted, Filament 2 interrupted	1	1	1	1

3.3.3.5 Emission Status ID 105

This parameter indicates the emission status of the gauge.

Emission status	Meaning
FALSE	Emission Off
TRUE	Emission On

3.3.3.6 Emission Current ID 106

This parameter indicates the value of the emission current in mA.

Emission currents [mA]
0
0.025
5
20

3.3.3.7 Active Filament ID 108

The Parameter defines / indicates the active filament (\rightarrow Mode Filament Selection).

Active Filament	Byte value	Meaning
1	1	filament 1 active
2	2	filament 2 active

3.3.3.8 Degas Status ID 109

This parameter indicates whether the gauge is in Degas mode.

Degas Status	Meaning
FALSE	Degas Off
TRUE	Degas On

3.3.3.9 Active Degas Filament ID 116

3.3.3.10 Mode Filament Selection ID 119

value of Active Filament (ID 108).

For the BPG402-SP, the value of the parameter is the same as the parameter

The parameter defines the operation mode of the filaments:

Mode Filament Selection (Filament User Mode)	Byte value	Meaning
Auto	0	Automatic Mode (default): The gauge alternates between filaments every time the emission is switched on.
Manual	1	Manual Mode: The gauge uses the filament selected by the attribute Active Filament (ID 108).

3.3.3.11 Emission User Mode State ID 201

This parameter indicates whether the gauge is in Automatic or Manual Emission Mode. The mode is set by Transition command 18 (ID 14). Automatic Mode is selected by default.

Emission User Mode State	Byte value	Meaning
FALSE	0	Manual Mode
TRUE	1	Automatic Mode

3.3.3.12 Hot Cathode Block State Command ID 14

This service is used for activating degas and emission modes via Profibus.

ID	Name	Structure	Data type	Bytes	Access	Range
14	Hot Cathode Block State Command	Rec	\rightarrow below	2	1/2_W	
Byte 0	Transition Command	Simple	UINT8	1		\rightarrow below
Byte 1	Value	Simple	UINT8	1		\rightarrow below

	Inactive Set Degas	No action
1	Set Degas	
	State	Activates/deactivates the Degas mode This service is used for activating/deactivating the Degas mode ($p < 7.2 \times 10^{-6}$ mbar). If the Degas mode has not been deactivated with Degas Off before, it is automatically turned off after 3 minutes. The Degas State can only be changed if $p < 7.2 \times 10^{-6}$ mbar, otherwise the command returns the error "Object State Conflict". The Transition Command Data Field Value can have the following values: $0 \Rightarrow$ Degas Off $1 \Rightarrow$ Degas On
-	Set Emission State	Turns the emission On or Off according to the target value $0 \Rightarrow$ Switch emission Off $1 \Rightarrow$ Switch emission On
128	Emission User Mode	 The device supports two modes: Automatic Mode: Emission is switched on or off by the integrated Pirani automatically. If the emission is switched on and is then switched off manually, the emission will be switched on again only if the pressure rises above the 3.2×10⁻² mbar and then drops below 2.4×10⁻² mbar. Manual Mode: Emission is switched on or off by the command "Set Emission State" If during run time the pressure exceeds 3.2×10⁻² mbar, the emission is switched off automatically. The measurement value equals the Pirani value. If the emission is switched off by the user while the pressure is still in BA range, the measurement value equals the Pirani value. 0 ⇒ sets Manual Mode 1 ⇒ sets Automatic Mode

Appendix A: Definitions

Data types

Abbreviation	Range	Data type
INT8	-2 ⁷ (2 ⁷ - 1)	Integer 1 byte
INT16	-2 ¹⁵ (2 ¹⁵ - 1)	Integer 2 byte
INT32	-2 ³¹ (2 ³¹ - 1)	Integer 4 byte
UINT8	0 (2 ⁸ - 1)	Unsigned integer 1 byte
UINT16	0 (2 ¹⁶ - 1)	Unsigned integer 2 byte
UINT32	0 (2 ³² - 1)	Unsigned integer 4 byte
FLOAT	$\pm 3.402 \times 10^{38}$	Floating Point, IEEE 754 Short Real Number, 4 byte
VSTRING(n)		ISO 646 and ISO 2375
OSTRING(n)		Octet string

Definitions

Term	Meaning
Store	This parameter defines whether the values are stored in non-volatile memory (\rightarrow store characteristics)
Default	Manufacturer-defined value

Store characteristics

Abbreviation	Meaning
V	"Volatile": Value is not saved to the RAM or EEPROM and is lost in the event of a power failure
N	"Nonvolatile": Value is saved to the RAM or EEPROM and is not lost in the event of a power failure

Data access

Abbreviation	Meaning	
1_R/W	Acyclically readable and writeable by a Master Class 1	
2_R/W	Acyclically readable and writeable by a Master Class 2	
1/2_R/W	Acyclically readable and writeable by a Master Class 1 and 2	
1_R	Acyclically readable by a master Class 1	
2_R	Acyclically readable by a master Class 2	
1/2_R	Acyclically readable by a master Class 1 and 2	
1_W	Acyclically writeable by a master Class 1	
2_W	Acyclically writeable by a master Class 2	
1/2_W	Acyclically writeable by a master Class 1 and 2	
0_XI	Cyclic output data with master Class 1	

Excerpts from: "PROFIBUS Profile for SEMI" $(\rightarrow \square \square [4], [6], [7])$

The following table explains terms used in connection with the Profibus.

Term	Meaning		
Alert Elements	Alert Elements are used to communicate notification mes- sages from slave to master when warnings, alarms or events are detected.		
Application	A software functional unit consisting of an interconnected aggregation of function blocks, events and objects, which may be distributed and which may have interfaces with other applications.		
Characteristic	An characteristic is a property or characteristic of an <i>entity</i> .		
	(Au) In block applications a block interface is defined by input/output parameters. These parameters have characteristics called parameter characteristics. Examples are access rights and identification names.		
	(IT) The UML defines characteristics as a feature within a classifier that describes a range of values that instances of the classifier may hold. It is a property of a class instance (object).		
Block (Block Instance)	A logical processing unit of software comprising an individ- ual, named copy of the block and associated parameters specified by a block type, which persists from one invoca- tion of the block to the next. Concept similar to the class/ object approach, but well suited to the automation require- ments.		
Class	(IT) A class represents a template for several objects and describes how these objects are structured internally. Objects of the same class have the same definition both for their operations and for their information structures.		
Configuration (of a system/device)	A step in system design: selecting functional units, assign- ing their locations and identifiers and defining their inter- connections.		
Data Structure	An <i>aggregate</i> whose elements need not be of the same <i>data type</i> , and each of them is uniquely referenced by an <i>offset identifier</i> .		
Data Type	A data item with certain characteristics and permissible operations on that data, e.g. INT8.		
Device	A physical entity capable of performing one or more speci- fied functions in a particular context and delimited by its interfaces.		
Direction of Data	Input data are transmitted from the device to the bus. Out- put data are transmitted from the bus to the device.		
Direction of Flow	A positive set point causes a flow from P to A.		
Entity	A particular thing, such as a person, place, <i>process</i> , object, concept, association or <i>event</i> .		
Function	(1) A specific purpose of an entity.(2) One of a group of actions performed by an entity.		
Function Block	A named <i>block</i> consisting of one or more input, output and contained parameters. Function blocks represent the basic automation functions performed by an application which is as independent as possible from the specifics of I/O devices and the network. Each function block processes input parameters according to a specified algorithm and an internal set of contained parameters. They produce output parameters that are available for use within the same function block application or by other function block applications.		

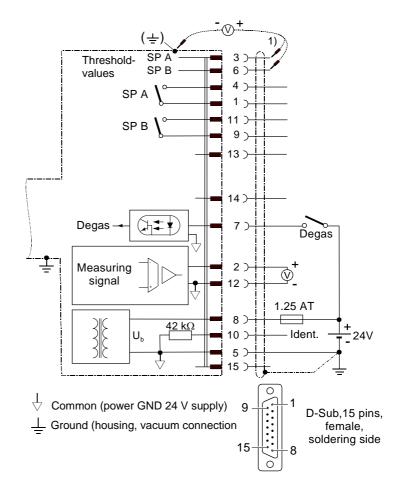
Excerpts from: "PROFIBUS Profile for SEMI" (cont.)

Term	Meaning	
Function Block Application	Application of an automation system performed by a Device Block, Function Block, Transducer Block and accompanied elements.	
Instance	A set of data related to an invocation of a function block or a class.	
Internal Resolution (ir)	The internal resolution is 16383 (3FFF _{hex}) for 100% and -16384 (C000 _{hex}) for -100% of the range.	
Mode	Determines the block operating mode and available modes for a block instance.	
Object	(IT) A software entity having identity, attributes and behav- ior.	
Parameter	A <i>variable</i> that is given a constant value for a specified <i>application</i> and that may denote the <i>application</i> .	
Device Block	A Device Block is a named block. Hardware specific pa- rameters of a field device, which are associated with a re- source, are made visible through the Device Block. Similar to transducer blocks, they insulate function blocks from the physical hardware by a set of implementation independent hardware parameters.	
Record	A set of <i>data items</i> of different data types treated as a unit.	
Resource	A resource is considered to be a logical subdivision within the software (and possibly hardware) structure of a device. Resources have independent control of their operation. The definition of a resource may be modified without affecting other resources within a device. A resource accepts and processes data and/or events from the process and/or communication interfaces and returns data and/or events to the process and/or communication interfaces, as specified by the applications utilizing the resource. An interoperable network view of applications is provided through device re- sources. Each resource specifies the network visible as- pects of one or more local applications (or parts of distri- buted applications).	
Simple Variable	A single variable which is characterized by a defined Data Type.	
Substitute Value	In case an optional parameter has not been implemented, the device behaves according to the substitute value for this parameter.	
Transducer Block	Transducer Block is a named block. Transducer blocks insulate function blocks from the specifics of I/O devices, such as sensors, actuators, and switches. Transducer blocks control access to I/O devices through a device in- dependent interface defined for use by function blocks. Transducer blocks also perform functions, such as cali- bration and linearization, on I/O data to convert it to a de- vice independent representation. Their interface to function blocks is defined as one or more implementation independ- ent I/O channels.	
Variable	A <i>software</i> entity that may assume any one of a set of values. The values of a variable are usually restricted to a certain data type.	

Appendix B: Block Type

Currently defined Block Type IDs

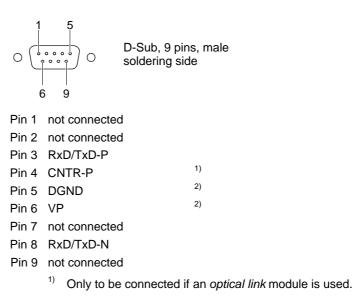
Block Name	Block Type ID
Device Block	1
Sensor Analog Input Function Block	2
One of N Channel Sensor Analog Input Function Block	3
Multi Channel Sensor Analog Input Function Block	4
Discrete Input Function Block	5
Actuation Analog Output Function Block	6
Discrete Output Function Block	7
Analog Output Function Block	8
Single Stage Controller Function Block	9
Gas Calibration Transducer Block	10
Flow Transducer Block	11
Sensor Analog Input Ambient Temperature Transducer Block	12
Heat Transfer Vacuum Gauge ¹⁾	13
Diaphragm Gauge	14
Cold Cathode Ion Gauge	15
Hot Cathode Ion Gauge 2)	16
Trip Point Function Block	17
Reserved	18 2 ⁸ - 1
Manufacturer-specific	2 ⁸ 2 ¹⁶ - 1


¹⁾ Pirani measuring system

²⁾ BA measuring system

Appendix C: Electrical Connections

Sensor cable connection


Technical data of BPG402 gauges \rightarrow [1], [2], [3].

Electrical connection

Pin 1	Relay switching function A, com contact		
Pin 2	Measuring signal output		0 +10 V
Pin 3	Threshold (setpoint) A	1)	0 +10 V
Pin 4	Relay switching function A, n.o. contact		
Pin 5	Supply common		0 V
Pin 6	Threshold (setpoint) B	1)	0 +10 V
Pin 7	Degas on, active high		0 V/+24 V
Pin 8	Supply		+24 V
Pin 9	Relay switching function B, com contact		
Pin 10	Gauge identification		
Pin 11	Relay switching function B, n.o. contact		
Pin 12	Measuring signal common		
Pin 13	Do not connect		
Pin 14	Do not connect		
Pin 15	Do not connect		

¹⁾ Do not connect pin 3 and pin 6 for normal operation of the gauge. These pins are reserved for adjustment of the setpoint potentiometers.

Profibus connection

²⁾ Only required as line termination for devices at both ends of bus cable $(\rightarrow \square [4])$.

Appendix D: Literature

- www.inficon.com
 Instruction Sheet
 Bayard-Alpert Pirani Gauge
 BPG402, BPG402-SD, BPG402-SP
 tima46e1
 INFICON AG, LI–9496 Balzers, Liechtenstein
- [2] www.inficon.com Instruction Sheet Bayard-Alpert Pirani Gauge BPG402-SD, BPG402-SP tima47e1 INFICON AG, LI–9496 Balzers, Liechtenstein
- [3] www.inficon.com Operating Manual Bayard-Alpert Pirani Gauge BPG402, BPG402-SD, BPG402-SP tina46e1 INFICON AG, LI–9496 Balzers, Liechtenstein
- [4] www.profibus.com(Profibus user organization)
- [5] European Standard for Profibus EN 50170
- [6] Profile for Semi-Conductor Devices; Part 1 Common Definitions v1.0; 8/2002
- [7] Profile for Semi-Conductor Devices; Part 3 Vacuum Pressure Gauges v1.0; 8/2002

Liechtenstein Tel +423/3883111 Fax +423/3883700 reachus @inficon.com

www.inficon.com