

Communication Protocol

Serial Peripheral Interface

Spot[®] CDS500D Spot[®] CDS530D

Table of Contents

1 Hardware Concept	3
1.1 Hardware Block Diagram	3
1.2 Interface Connector and Cable	3
1.3 Grounding Concept	4
1.4 Timing Specifications	4
1.5 Interface Hardware Specifications	4
1.5.1 Power Supply	4
1.5.2 Recommended Operating Conditions	4
1.5.3 SPI	5
1.6 Start-Up and Reset	6
1.6.1 Power-On Reset	6
1.6.2 Partial Reset	6
2 Read Results	7
2.1 Measurement Data	7
2.1.1 Pressure	7
2.1.2 Press-S-2	8
2.1.3 Press-S-2	8
2.1.4 Temperature	9
2.1.5 Status and Error	10
2.2 Label and Supplemental Data	10

For cross-references within this document, the symbol (\rightarrow \boxtimes XY) is used.

Trademark

Spot[®] INFICON Holding AG

Hardware Concept

1

This section describes how one or more Spot sensor(s) is (are) physically connected with a master. When doing so, the master will be able to receive pressure and temperature data from each Spot slave separately.

The data exchange link consists of a simple SPI (Serial Peripheral Interface), therefore only three lines and a chip select signal are necessary. The additional RDY signals the end of a measurement cycle. It should be used in noise critical applications. You should not read data from the chip during measurement cycles. (This would cause crosstalk from the SPI to the measurement data).

1.1 Hardware Block Diagram

1.2 Interface Connector and Cable

Connector type: JST 1 mm, 10 pin Cable length: ≤15 cm

Pin assignment

Ρ	'n	Signal	Description	Direction (sensor side)
	1	+5 V	Power Supply	input
2	2	GND	Supply Common	input
:	3	CLK	SPI Clock	input
4	4	SS/	SPI Slave Select (low true)	input (low true)
į	5	MISO	SPI Master Input Slave Output	output (tristate)
(6	MOSI	SPI Master Output Slave Input	input
-	7	RDY/	Ready Signal (new measurement value available)	output (low true)
8	8	C1/C0	Internal use only, must be left open	output
9	9	R0/Rref	Internal use only, must be left open	output
1	0	Vpp_OTP	Internal use only, must be left open	input

1.3 Grounding Concept

The metallic sensor housing (flange) acts as a shielding for the very sensitive electronic measurement frontend. In order to achieve the specified noise specifications, the sensor flange is connected to GND (Supply Common). The impedance of such a connection should be as low as possible. Therefore it is realized directly on the PCB at the frontend of the electronics. This solution guarantees lowest noise and simultaneously maximizes EMC robustness.

1.4 Timing Specifications

Signal	Description	MIN	TYP	MAX	UNIT
CycleTime	Length of a measurement cycle	1	5	200	ms
ReadOutTime	Length of readout window	-	300	-	μs

1.5 Interface Hardware Specifications

1.5.1 Power Supply

Signal	Description	MIN	TYP	MAX	UNIT
Vcc	Supply voltage	4.75	5.0	5.25	V (dc)
Ripple	Supply voltage ripple and noise (BW = 20 MHz)			50	mVpk-pk
lcc	Supply current		1	5	mA

1.5.2 Recommended Operating Conditions

Input lines CKL, SS/, MOSI	The input lines CKL, SS/ and MOSI and the output line MISO are buffered with a
Output line MISO	SN74ABT125.

		SN54A	BT125	SN74A		
	Description	MIN	MAX	MIN	MAX	UNIT
Vcc	Supply voltage	4.5	5.5	4.5	5.5	V
ViH	High-level input voltage	2		2		V
VIL	Low-level input voltage		0.8		0.8	V
Vi	Input voltage	0	Vcc	0	Vcc	V
Іон	High-level output current		-24		-32	mA
IOL	Low-level output current		48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate		10		10	ns/V
$\Delta t/\Delta Vcc$	Power-up ramp rate	200		200		µs/V
T _A	Operating free-air temperature	-55	125	-40	85	°C

All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the Texas Instruments application report, "Implications of Slow or Floating CMOS Inputs", literature number SCBA004.

Output line RDY/

The output line "RDY/" is driven by a SN74AHCT1G125.

	Description	MIN	MAX	UNIT
Vcc	Supply voltage	4.5	5.5	V
V _{iH}	High-level input voltage	2		V
VIL	Low-level input voltage		0.8	V
VI	Input voltage	0	5.5	V
Vo	Output voltage	0	Vcc	V
Іон	High-level output current		-8	mA
IOL	Low-level output current		8	mA
$\Delta t / \Delta v$	Input transition rise or fall rate		20	ns/V
TA	Operating free-air temperature	-40	85	°C

1.5.3 SPI

SPI parameters	Parameter	Description	Setting
	CPOL	Clock polarity	0, Clock Idle Iow
	CPHA	Clock phase	1, Transmit data on leading edge, read data on falling edge
	Mode	SPI mode	1 (CPOL = 0, CPHA = 1)
	DORD	Bit sequence order	0, MSB first

SPI write

SPI read

SPI timing

Name	Symbol		Linit		
	Symbol	min.	typ.	max.	Unit
Clock frequency	f _{SPI-bus}	_	10	17	MHz
Clock pulse high-state	t _{pwh}	30	50	_	ns
Clock pulse low-state	t _{pwl}	30	50	_	ns
SS/ (SSN) to valid latch	t _{sussn}	8	_	_	ns
SS/ (SSN) minimal pulse length between write cycles	t _{pwssn}	30	_	_	ns
Data setup time	t _{sud}	6	_	_	ns
Data hold time	t _{hd}	4	_	_	ns
Data valid after clock	t _{vd}	-	-	26	ns

1.6 Start-Up and Reset

1.6.1	Power-On Reset	After powering on the device, it must be reset by writing the reset command to the device. The command for a Power-On Reset consists of the single byte 0x88. It is highly recommended to do this after every power-on.
		After the reset, the device starts its measuring cycle autonomously.
1.6.2	Partial Reset	A partial reset only resets the front-end and DSP, but leaves SRAM and registers unchanged. The partial reset command consists of the single byte 0x8A. It can be used to clear errors and recover crashes.

tirb49e1-a (2023-11) SPI.cp

2 Read Results

2.1 Measurement Data

The sensor provides 5 measurement values:

- Pressure; combined range of sensor 1 and sensor 2
- Press-S-1; sensor 1 only
- Press-S-2; sensor 2 only
- Temperature
- Status

They can be read by a 4 byte SPI-Code as follows.

The read measured values are only valid if the simultaneously read status value is 0x10 00 00. If the status has any other value, the measurement must be considered invalid. The individual bits of the status are described in 2.1.50.

2.1.1 Pressure

The SPI communication string for reading the pressure value consists of total 4 bytes as follows:

0x41 - 0x00 - 0x00 - 0x00, only the first byte is relevant, the other three must be sent but the content of them doesn't matter.

Read Pressure Op-Code:

Byte_3								Byte_2	Byte_1	Byte_0	
0	1	0	0	0	0	0	1	don't care			

The result (u_press) is a fixed-point number in two's complement format with a scaling factor of 2^{21} as follows:

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Byte_2											Byt	e_1							Byt	e_0			
S	Integ	teger									F	ractic	nal (2	21 bits	6)								

The result (u_press) is a fixed-point number in two's complement format with a scaling factor of 2^{21} , consisting of the sign-bit S, 2 integer and 21 fractional bits. The fourth byte (Byte_3), that's also received, must be ignored.

The resulting pressure is defined as Full_scale × u_press.

p = F.S.R. × u_press (24 bit read result)

u_press is calculated by dividing the 24-bit result by 2^{21} : 2^{21} equals 2'097'152.

Examples

- Fullscale (F.S.R.): 24-bit result = 2'097'152 (0x200000)
 - Half F.S.R.: 24-bit result = 1'048'576 (0x100000)
- smallest pos. val: 24-bit result = 1 (0x000001) equals to 0.00000047683 × F.S.R.
- Zero Pressure: 24-bit result = 0 (0x00000)
- smallest neg. val: 24-bit result = -1 (0xFFFFF) equals to -0.00000047683 × F.S.R.
- neg. Half F.S.R.: 24-bit result = -1'048'576 (0xF00000)
- neg. F.S.R. 24-bit result = -2'097'152 (0xE00000)

2.1.2 Press-S-2

The SPI communication string for reading the pressure value consists of total 4 bytes as follows:

0x46 - 0x00 - 0x00 - 0x00, only the first byte is relevant, the other three must be sent but the content of them doesn't matter.

Read Pressure Op-Code:

			Byt	e_3				Byte_2	Byte_1	Byte_0
0	1	0	0	0	1	1	0		don't care	

The result (u_press) is a fixed-point number in two's complement format with a scaling factor of 2^{21} as follows:

23	22	21	20	19	18	17	16 15	14	13	3 12	11	10	9	8	7	6	5	4	3	2	1	0
			Byte	e_2						Byt	e_1							Byt	e_0			
S	Inte	ger								F	ractio	nal (2	21 bits	s)								
							T s T	he res caling he fou	ult (u facto irth b	u_press or of 2 ²¹ oyte (By	s) is a , cons te_3)	fixed- sisting , that's	-point g of th s also	numl ne sigi rece	ber in n-bit { ived,	two's S, 2 ir must	comp iteger be igr	oleme and 2 nored.	nt for 21 frac	mat w ctiona	ith a I bits.	
							I	he res	ulting	g press	ure is	defin	ed as	s Full_	scale	e×u_	press	•				
											p =	F.S.F	λ. × u	_pres	ss (2-	4 bit r	ead re	esult)				
							u 2	_press ²¹ equa	s is ca als 2'	alculate '097'15	ed by 2.	dividi	ng the	e 24-b	oit res	ult by	2 ²¹ :					
	Examples						•	Fulls	scale	e (F.S.F	R.): 24	4-bit r	esult	= 2'0	97'15	2 (0x2	20000	0)				
							•	Half	F.S.	.R.:	2	4-bit r	esult	= 1'04	48'57	6 (0x ⁻	10000	0)				
							•	sma	allest	pos. va	al: 24 e	4-bit r quals	esult to 0.0	= 1 (0 00000)x000)0476	001) 83 × I	F.S.R					
							•	Zero	o Pre	essure:	2	4-bit r	esult	= 0 (0	0x000	000)						
							•	sma	allest	neg. va	al: 24 e	4-bit r quals	esult to -0.	= -1 0000	(0xFF 00476	FFFF 683 ×	[:]) F.S.F	R.				
							•	neg	. Half	f F.S.R	.: 24	4-bit r	esult	= -1'(048'5	76 (0)	(F000	00)				
							•	neg	. F.S	.R.	2	4-bit r	esult	= -2'(097'1	52 (0)	<e000< td=""><td>00)</td><td></td><td></td><td></td><td></td></e000<>	00)				
2.1.3	8 Pr	ess-	S-2				T 4 0 s	he SP bytes x47 – ent bu	l con as fo 0x00 t the	nmunic ollows:) – 0x00 conten	ation) – 0x t of th	string 00, or iem de	for re hly the oesn'i	eadino e first t matt	g the byte ær.	press is rele	ure va evant,	alue c the o	onsist ther tl	is of to hree r	otal nust k	be

Read Pressure Op-Code:

			Byt	e_3				Byte_2	Byte_1	Byte_0
0	1	0	0	0	1	1	1		don't care	

The result (u_press) is a fixed-point number in two's complement format with a scaling factor of 2^{21} as follows:

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Byte_2										Byte	e_1							Byte	e_0			
S	Integ	Integer									F	ractio	nal (2	21 bits	5)								

The result (u press) is a fixed-point number in two's complement format with a scaling factor of 2²¹, consisting of the sign-bit S, 2 integer and 21 fractional bits. The fourth byte (Byte_3), that's also received, must be ignored.

The resulting pressure is defined as Full_scale × u_press.

p = F.S.R. × u press (24 bit read result)

u press is calculated by dividing the 24-bit result by 2²¹: 2²¹ equals 2'097'152.

Examples

- Fullscale (F.S.R.): 24-bit result = 2'097'152 (0x200000)
 - Half F.S.R.: 24-bit result = 1'048'576 (0x100000)
- 24-bit result = 1 (0x000001) smallest pos. val: equals to 0.00000047683 × F.S.R.
- Zero Pressure: 24-bit result = 0 (0x00000)
- 24-bit result = -1 (0xFFFFF) smallest neg. val: equals to -0.00000047683 × F.S.R.
- neg. Half F.S.R.: 24-bit result = -1'048'576 (0xF00000)
- neg. F.S.R. 24-bit result = -2'097'152 (0xE00000)

2.1.4 Temperature

The SPI communication string for reading the temperature value consists of total 4 bytes as follows:

0x4D - 0x00 - 0x00 - 0x00, only the first byte is relevant, the other three must be sent but the content of them doesn't matter.

Read Temperature Op-Code:

			Byt	e_3				Byte_2	Byte_1	Byte_0
0	1	0	0	1	1	0	1		don't care	

The result (u_temp) is a fixed-point number in two's complement format with a scaling factor of 221 as follows:

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Byte_2											Byt	e_1							Byt	e_0			
S	S Integer										F	ractic	onal (2	21 bits	5)								

The result (u temp) is a fixed-point number in two's complement format with a scaling factor of 221, consisting of the sign-bit S, 2 integer and 21 fractional bits. The fourth byte (Byte_3), that's also received, must be ignored.

The resulting temperatur is defined as k × u temp, where k is defined as a Calibration Constant (typically 25 °C).

	T = k × u_temp (24 bit read result) k = 25 °C (calibration temperature)
u 2	temp is calculated by dividing the 24-bit result by 2^{21} : ¹ equals 2'097'152.

٠	T ≥ 100 °C:	8'388'607 (0x7FFFF)
٠	T = 50 °C:	24-bit result = 4'194'304 (0x400000)

- T = 25 °C: 24-bit result = 2'097'152 (0x200000)
- T = 0 °C:
 - 24-bit result = 0 (0x00000)
- T = -25 °C: 24-bit result = -2'097'152 (0xE00000)

tirb49e1-a (2023-11) SPI.cp

2.1.5 Status and Error

The SPI communication string for reading the status value consists of total 4 bytes as follows:

0x48 - 0x00 - 0x00 - 0x00, only the first byte is relevant, the other three must be sent but the content of them doesn't matter.

Read Status Op-Code:

			Byt	e_3				Byte_2	Byte_1	Byte_0
0	1	0	0	1	0	0	0			

Byte_3	Byte_2	Byte_1	Byte_0
don't care		24-Bit Status value (Bit 23 0)	

Bit	Description

- SPI communication took place during measurement. Increases noise.
 Indicates a hardware-related error (crash of internal state machine controller)
- 20 Indicates RUNBIT, must always read 1
- 16 Combi-error, indicates that any error occurred
- 13 CDC error, indicates that any port is short-circuited
- 10 Port 5 error (Dual SPOT only)
- 9 Port 4 error (Dual SPOT only)
- 8 Port 3 error
- 7 Port 2 error
- 6 Port 1 error
- 5 Port 0 error
- 4 MUP error, indicates a hardware-related error (crash of internal state machine controller)
- 3 Temperature error

All other bits not mentioned must be ignored.

The read measured values according to chapter 2.1 are only valid if the simultaneously read status value is 0x10 00 00 (only RUNBIT is set).

If Bits 4 or 22 are set in the status register, the sensor must be reset. This is done by the partial reset command 0x8A.

2.2 Label and Supplemental Data

The Label data as well as other supplemental information can be read from the device. Readable:

- Product Number
- Serial Number
- FullScale_1, upper pressure range incl. unit
- FullScale_2, lower pressure range incl. unit
- Speed Setting, Cycle-Time
- Type, Sensor Name

The information is stored in 4 blocks of 32 bytes each.

Block No.	Start Address	Length [Bytes]		Content
1	3824 (0xEF0)	32		Product No.
2	3856 (0xF10	32		Serial No.
3	3888 (0xF30)	2 × 16	FS1	FS2 @ 3904 (0xF40)
4	3920 (0xF50)	2 × 16	Туре	Speed @ 3936 (0xF60)

The data are stored as ASCII strings and can be read at any time by means of the 3 bytes Read-Byte command which is defined as follows:

Byte_2		e_2	Byte_1	Byte_0		
0	0	0	1	Address <11 0>		Data <7 … 0>

Address <11 ... 0> defines the start address according to the table above.

The individual sensor content is defined according to the table below. All strings are ASCII coded. Binary 0 (0x0) defines the end of a string. EOS=EndOfString

Block 1: Product Number:	"PN=EOS", max. length = 28 characters
Block 2: Serial Number:	"SN=EOS", max. length = 28 characters
Block 3: Subblock 1: FS_1:	"FS1=xxxxxyyyyyEOS", max. 6 characters for range and 5 for unit
Block 3: Subblock 2: FS_2:	"FS2=xxxxxyyyyyEOS", max. 6 characters for range and 5 for unit
Block 4: Subblock 1: Type:	"Type=xxxxEOS", max. length = 10 characters
Block 4: Subblock 2: Speed:	"Speed=xxxx.yymsEOS", max. 7 characters for speed

www.inficon.com