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Early investigations on quartz crystal resonators indicated, that for small mass
change, the frequency shift is linearly proportional to the added mass. The
accuracy of mass determination was later improved somewhat by using the
so-called “period measurement” technique, which assumes a linear relationship
between added mass and change in period of oscillation. However, recent studies
indicate that for large mass load, the elastic properties of the deposited material
have to be taken into consideration. Based on the theory of one-dimensional
acoustic composite resonators, an equation relating the resonant frequency . of the
composite system to the mass and acoustic impedance of deposited material can
be derived. The equation shows that materials with different acoustic impedances
will obey different mass—frequency relations. The experimental data for a number
of materials with different elastic properties are shown to be in excellent
agreement with the theoretical predictions to a mass load as large as 50x 10~}
g/cm®. The results indicate that if the acoustic impedance of the deposited
material is known, quartz crystal resonantors can be used for measuring a large

deposited mass to a remarkable accuracy by using the proper formula.

INTRODUCTION

The possibility of using piezoelectric quartz resonators
as mass sensing devices was first explored by Sauerbrey
in 1957.1* It was found that for a small mass uniformly
deposited over the crystal surface, the shift in resonant
frequency is linearly proportional to the mass. Further-
more, with the simple theory postulated, the frequency
shift was found to be independent of the physical pro-
perties of deposited material. This means that the de-
posited mass can be determined by simple frequency
measurements without the knowledge of its physical
properties. Because of this simplicity, piezoelectric
quartz crystal microbalances have been extensively used
in thin film deposition processes as thickness and rate
monitors. The accuracy of mass determination by those
instruments was adequate for most applications pro-
vided that the restriction on small mass load could be
observed. Typically, fora 5-MHz AT-cut quartz crystal,
the error is less than 29, for a total mass load of less
than 2X107% g/cm?.

Recently, attempts have been made both to extend
the mass loading capability of quartz crystals and to
improve the accuracy of mass determination. A different
formula relating the deposited mass to the resonant
frequency of quartz crystal has been employed in a
number of commercial instruments since 1969. The
measuring formula assumes a linear relationship be-
tween the change in period of oscillation and the de-
posited mass. This became the so-called “‘period mea-
surement’’ technique. However, the elastic properties of

578 J. Vac. Sci. Technol., Yol. 12, No. 1, Jan./Feb. 1975

deposited material do not enter into the mass—frequency
formula either. Early experimental results indicated
that the adoption of this modified formula could indeed
provide a significant improvement in accuracy of mass
determination, especially for quartz crystals with large
mass load.**

A recent study made by Lu and Lewis® on quartz
crystal resonators indicated that for precise mass de-
terminations, the elastic properties of deposited material
have to be taken into consideration. Based on the
analysis of one-dimensional composite acoustic resona-
tors,* an equation can be derived which relates the
resonant frequency of the composite system not only to
the mass of deposited material, but also to its acoustic
impedance. This theoretical equation has been shown
to be in good agreement with experimental results.
Since the results represent a significant departure from
previous studies on quartz crystal microbalances, it was
decided that a more extensive experimental study should
be made to test the range of validity of the theoretically
derived equation. In the present study, quartz crystals
with resonant frequencies ranging from 4 to 6 MHz were
investigated. The mass load on these crystals was ex-
tended to as large as 50X 10~% g/cm?,

THEORETICAL BACKGROUND

The resonant frequency f, of a quartz crystal plate
oscillating in the fundamental thickness shear mode is
determined by its thickness ¢, according to the equation

Jata=1q/2, (1)
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FiG. 1. Schematic representation of a one-dimensional composite
resonator consisting of a quartz crystal and a deposited film. The
direction of acoustic wave propagation is actually perpendicular to
the surfaces of the resonator.

where v, is the shear wave velocity along the direction
of thickness. For AT-cut quartz crystal, v equals to
3.336X10%* cm/sec.

From Eq. (1), the resonant frequency shift df, caused
by an infinitesimal change in crystal thickness dtq should
obey the relation

dfa/fo= —dty/ty. (2)

Equation (2) can also be written in terms of crystal
mass mq and change of crystal mass dm,. One thus has

dfq/fq= —dmg/mq. (3)

In order to justify the use of Eq. (3) for mass deter-
mination, Sauerbrey postulated that for small mass
change, the addition of foreign mass can be treated as
a mass change of quartz crystal.? Equation (3) thus
becomes

dfo/ fo= —dm/m,, (4)

where dm is an infinitesimal amount of foreign mass
uniformly distributed over the crystal surface. If one
assumes the validity of Eq. (4) for an arbitrary but
small mass change, it can be written in the form of

mr=mq(fc"'fq)/fq (3)

for determining the mass of thin film m/, where Jeis
the resonant frequency of quartz crystal with the de-
posited film. If the film density p; is known, the film
thickness ¢ can be calculated by using the following
equation :

pity= (Dq‘q/fq) (fc_fq}s (6)

where p, is the density of quartz.

Equation (6) predicts that the frequency shift is
linearly proportional to the deposited mass and not
affected by the physical properties of the film. Although
Eq. (6) is supported by early experimental data, the
substitution of quartz with a mass equivalent of foreign
material needs theoretical justifications. Stockbridge’
thus applied a Rayleigh perturbation analvsis to the
problem and obtained a mass—frequency relation same
as Eq. (6). The basic assumption is that there is no
potential energy stored in the added mass during oscil-
lation. This assumption can perhaps be justified for very
thin films if one considers the discontinuous nature of
film structure and the surface roughness of the quartz
crystal. However, as the mass of deposited material
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becomes appreciable and forms a uniform layer of finite
thickness, the assumption that acoustic waves do not
propagate in the film becomes less acceptable,

In an effort to rectify the difficulties, Miller and Bolef®
took a different approach and treated the quartz-film
combination as a composite acoustic resonator. The
system, shown in Fig. 1, consists of a film characterized
by thickness ¢, shear wave velocity v;, and density p;
and a quartz crystal characterized by corresponding
parameters lq, ¥, and pq. The quantities Z;=ppw;, and
Zq=pqtq are known as the shear-mode acoustic impe-
dance of film and of quartz crystal respectively. 1{ the
film is separated from the quartz crystal, a mechanical
resonant frequency obeying the relation

Ji=vi/24 (7

can be defined for the film while the resonant frequency
of quartz crystal obeys Eq. (1). Because Z; is generally
different from Z,, a continuous acoustic wave propa-
gating in the direction perpendicular to the surface will
be partially transmitted and partially reflected at the
film-quartz interface. The result is the formation of a
complicated multiple interference pattern which deter-
mines a set of resonant frequencies of the composite

system. If one assumes total reflection of waves at both

surfaces and neglects the acoustic losses in both me-
diums, the resonant frequency of composite system Te
can be determined by the following equation [Eq. (9)
of Ref. 6]:

2rfcos(2n fo/ fi) —cos(2x fo/ f2) ]
+ (1'{"72)[1 _COS(Zch/fq) COS(ZTJ’fE/fi)}
+(1—r) sin(2rfe/fo) sin(2rfe/f) =0, (8)

where r=(Z,—2Z;)/(Z,+Z;) is the reflection coefficient.
By retaining only terms to second order in the series
expansion of the trigonometric functions, it can be
shown that for small added mass, Eq. (8) reduces to
the original Sauerbrey’s result. Miller and Bolef's ap-
proach was certainly more realistic for cases involving
uniformly deposited films of well defined thichness,
while Stockbridge’s theoretical argument appeared to
be appropriate for extremely thin films. Fortunately,
both approaches yielded the same result. Therefore, the
application of Eq. (5) for determining small deposited
mass can be theoretically justified.

The utilization of Eq. (3) for mass determination be-
gan to encounter difficulties when attempts were made
to extend the mass loading capability of quartz crystals.
While improvements made in the crystal design and
mounting technique enabled the quartz crystal to re-
main oscillating for large mass load, the error in mass
determination became less tolerable. More seriously,
when the quartz crystal microbalance is used to measure
the rate of mass change, such as thin film deposition
rate, the error is even greater. This is because the error
in mass measurement itsell becomes a time varying
function and increases with respect to time.
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A commonly used method for improving the accuracy
of quartz crystal microbalance with large mass load is
the so-called ''period measurement' technique.** This
technique involves the use of the following equation for
mass determination:

pite=patafo(1/fe=1/13). ©

Since 1/f. and 1/, are the periods of oscillation for
the quartz crystal resonator with and without the de-
posited film, Eq. (9) implies that the deposited mass is
linearly proportional to the change in period of oscilla-
tion. Equation (9) can be obtained by differentiating
Eq. (1) and writing it in the form of

d(1/fo) = (2/vq)dt,. (10)

The deposited mass is then treated as a mass equiva-
lent of quartz, or, in other words, dt, is replaced by
(pt/pa)dti. An integration of

d(1/fa) = (2/vq) (p1/pa)dt (11)

thus yields Eq. (9). However, since the treatment of
deposited mass as a mass equivalent of quartz has
already been challenged even for small mass loads on
quartz crystals, it is difficult to accept the same argu-
ment, in the derivation of Eq. (9), for large mass loads.
Even though the improvement in accuracy of mass de-
termination by using Eq. (9) has been supported by
experimental evidence, it can nevertheless be considered
as an emperical equation only.

A different approach to improve the accuracy of
quartz crystal microbalance was suggested by Lu and
Lewis.® Equation (8) clearly indicates that the resonant
frequency of a composite system is also determined by
the acoustic properties of the deposited film. Therefore,
its effect on the accuracy of mass determination by a
quartz crystal resonator was reexamined. It was found
that the complicated expression of Eq. (8) can be re-
duced to a much simpler form of

tan(rf./fo) = — (1/Z) tan(rfe/ f1), (12)
where

Z=2Z4/Z1=pq¥e/p1¥t (13)

is the shear-mode acoustic impedance ratio between the
quartz crystal and deposited film. For mass determina-
tion purposes, Eq. (12) can be expressed in the form of

pitt=[polafo/Z ] tan™Z tan(r (fo—f)/fa1}.  (14)
If one introduces two dimensionless parameters,
M =piti/polq (15)
and
F=(fa=f/ fa (16)

as the reduced areal density and reduced frequency
shift, respectively, Eq. (14) becomes
M={1/[xZ(1—F)]} tan~'(Z tan= F). (17

Figure 2 is a plot of Eq. (17) with different values of Z.
It shows that deposited materials with different acoustic
impedances will follow different mass-frequency rela-
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Fi1c. 2. Reduced areal density M as a function of reduced fre-

quency shift F for different values of shear-mode acoustic imped-
ance ratio Z. The dashed line representing M = F is included for
comparison purpose.

tions. The differences become increasingly large as the
mass load on the quartz crystal increases. This predic-
tion has been confirmed by experimental results.

It can easily be verified that Eq. (9) is a special case
of Eq. (14) with Z=1, or for the case of a perfect
acoustic impedance match (quartz on quartz). For small
frequency shift, that is, f.= f3, Eq. (14) reduces to Eq.
(6). Equation (6), which is equivalent to

F=M, (18)

is also shown in Fig. 2 for comparison purposes. One
can see in the figure that Eq. (18) represents a closer
approximation of Eq. (14) with Z=2 than Eq. (9) does.
In practice, however, materials commonly used in thin
film deposition processes have Z either close to or less
than unity. This explains the improvement in accuracy
of mass determination resulting from the so-called
"'period measurement’’ technique Eq. (9) withZ=1, but
also shows that such improvement is rather coincidental.

EXPERIMENTAL TECHNIQUE

The quartz crystals used were AT-cut with funda-
mental series resonant frequencies ranging from 4 to 6
MHz. The crystals were 1.40 cm in diameter with
beveled edges and slight convex contouring of one or
both surfaces. Each crystal was coated with circular
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aluminum electrodes on both sides. The electrodes were
several hundreds angstroms thick and 1.30 cm in di-
ameter. High-purity materials were evaporated from an
electton beam source in a conventional vacuum system.
No attempts were made to keep the deposition rate
constant. The crystals were exposed to evaporant on
one side through masks with a circular opening of the
same diameter as the electrodes. After each deposition,
the mass on individual crystals was measured to a pre-
cision of =1X10~¢ g by a Sartorius 2405 microbalance.
The areal density was then calculated from the depos-
ited mass dividing by the area of deposition. This is the
same quantity as p¢(. Therefore, it was not necessary
to know the density and thickness of the film separately.

For the measurement of resonant frequency, the
crystal was placed in a crystal holder and held by finger
springs near the edge to minimize the effect of acoustic
coupling. The crystal was connected to an oscillator cir-
cuit and its output was measured by a digital frequency
counter. With proper adjustment of the component
values in the oscillator circuit, crystals with frequency
shifts as much as 409 of their original frequencies could
often be made to continue oscillating.

It was difficult to precisely determine the thickness
of a quartz crystal because its surfaces were slightly
contoured. The quartz crystal thickness t, was therefore
determined by using Eq. (1) with the known fq rather
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than by actual measurement. A density of 2.648 g/cm?
was used for quartz.®

Although f, is defined as the resonant frequency of
the quartz crystal with no deposited material (including
the electrodes), using the resonant frequency of a crystal
with the thin aluminum electrodes for fq caused a
difference of less than 0.19} in mass determinations.
This was understandable because the electrodes were
very thin and aluminum matches very well with quartz
both in density and acoustic impedance. Thus, the
resonant frequencies of crystals with the electrodes were
treated as f, in most of the computations.

RESULTS AND DISCUSSION

The resonant frequency of a quartz crystal f, does
not show up in Eq. (17) because it is absorbed into the
reduced parameters F and M. This means that for a
specific material, mass—frequency relations of crystals
with different resonant frequencies can be represented
by a single curve of M vs F. This prediction was con-
firmed by experimental data obtained on all materials
being studied. The results for gold deposited on crystals
with different f, are shown in Fig. 3. The value of Z for
gold was obtained from its bulk properties.’® The results
indicate that the fesonant frequency of the quartz crys-
tal does not affect the accuracy of mass determination.

The range of validity of Eq. (17) was also experi-
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mentally tested using materials of different Z and very
large mass loads. Figure 4 shows experimental results
for nickel and silver. The data for aluminum and copper
are shown in Fig. 5. Again, all values for Z were calcu-
lated from properties of bulk materials.”® It should be
noted that some of the experimental data points repre-
sent a mass load of close to 50 X 10~ g/cm? on the quartz
crystal. For aluminum on 6-MHz crystals, the thickness
of such deposited mass equals to about 70%, of the
quartz crystal. Considering the possible differences in
acoustic properties between film and bulk materials, the
agreement between experimental data and theoretical
equations using the bulk properties is remarkably good.

There are several factors which can affect the ac-
curacy of Eq. (17) for mass determination. The most
significant factor appears to be the stress in the films.
With a very thick film on the crystal, the crystal surface
distortion due to stress could easily be observed. For all
materials examined in this study, the surface with the
deposited film always became concave. This is consistent
with the fact that for normal deposition temperatures,
the stress in metal films is typically tensile, i.e., the film
contracts in the plane of the surface. The existence of
tensile stress in the film can cause the resonant fre-
quency of an AT-cut quartz crystal to be higher than
that in a stress free state.! This means that the observed
values for f. are higher than normal. Consequently, the
calculated values for (fy— f.)/ fq are less than the actual
values, This will cause a shift of experimental points to
the left of the curves representing the theoretical
equations.

The magnitude of this deviation can be quantitatively
correlated to the estimated magnitude of stress in the
quartz crystal. The presence of large stress in deposited
copper and nickel films is well known. Silver and gold
are known as materials producing films with relatively
low stress. It should also be realized that for a specific
areal density, the film thickness is inversely proportional
to its density. Therefore, if the stresses produced in gold
and aluminum films are of the same magnitude, the
stress in the quartz crystal caused by an aluminum film
will be almost one order of magnitude higher than that
caused by a gold film of equal areal density.

The propagation of acoustic waves in the deposited
film is also affected by the presence of static stress.
Additionally, it is reasonable to assume that the acoustic
impedance of deposited films should be slightly different
from that of bulk materials due to structual and density
differences. These can also be the contributing factors
to the observed differences between experimental data
and theoretical equations using bulk properties.

For materials examined in this study, the error in
mass determination between experimental data and
theoretical predictions using acoustic impedance for
bulk material is less than 39, even for the worst case.
If measurements of higher precision are required, one
can use an emperically determined value of Z in Eq. (14)
for mass determination. For example, in Fig. 3, the
experimental points for aluminum can be brought tc a

J. Vac. Sci. Technol,, Vol. 12, No. 1, Jan./Feb. 1975

.7

582

. 7
1 / ‘1
Il !
‘ /
1
4 7
/i
0.6 4 g
)
i /
i
i o
' /,f
-
/q
0.8 5 /
' /
U
-
:
3 y '
¥ 4
[ { !
@ 0.4 ’
s 7
!
a ; !
-4 V|
: '
H b4
0.3 4
o ')
w Y
2 ’
3 ‘ EXPERIMENT  (Cu)
S
3 i . 1,7 6.08 MMz
‘
/
v - EXPERIMENT  (Al)
Ly O.8,0  1,16.05 MHz
o/ THEORY
/ ————  7:0.437 (BULK Cu}
— = —  I'1.077 (BULK Al)
—_— n
0.1
& ” :
0 0. 0.2 0.3 0.4 05
REDUCED FREQUENCY SHIFT  F
Fic. 5. Comparison between experimental data and Eq. (17) for

copper and aluminum.

nearly perfect fit of a curve representing Eq. (17) with
Z=1.04.

CONCLUSION

The present study examined the validity range of
mass—{requency relations derived from an acoustic anal-
ysis of one-dimensional composite resonators. The re-
sults showed that Eq. (17) is valid for a mass load of at
least 30X 10~? g/cm® and for materials of different
acoustic impedances. It is also valid for crystals with
resonant frequencies ranging from 4 to 6 MHz. The
experimental data demonstrated, without ambiguity,
that for precise mass determination by quartz crystal
resonators, especially for crystals with large mass load,
the elastic properties of the deposited film have to be
considered. Good accuracy of mass determination can
be obtained by using the acoustic impedance of bulk
material for Z in Eq. (17). It is possible to further im-
prove the accuracy by employing an experimentally
determined value of Z for the deposited film.

Since Eq. (17) is relatively simple and contains only
one more material constant other than the density of
deposited film, namely, the acoustic impedance ratio Z,
it can be programmed into an instrument using modern
digital circuitry. Real-time measurements of thickness
and rate during thin film deposition processes can thus
be made. It appears that the outstanding problems of
quartz crystal microbalances at the present time are
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generally practical ones such as the activity and sta-
bility of the crystals.
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