

DeviceNet™

for Capacitance Diaphragm Gauge

CDG045D, CDG100D, CDG160D, CDG200D

General Information

Caution

Caution: data transmission errors

Any attempt to simultaneously operate the gauge via the RS232C Serial Interface and a Fieldbus interface (DeviceNet or Profibus) or the diagnostic port may result in incorrect data and data transmission errors.

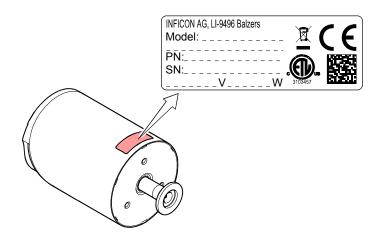
Therefore, it is inadmissible to simultaneously operate the gauge via the RS232C Serial Interface and DeviceNet, Profibus, or the diagnostic port.

Intended Use

This Communication Protocol contains instructions for operating DeviceNet interfaces (slaves) together with a master.

This manual describes the functionality of DeviceNet for programming purposes. For more information $\rightarrow \square$ "DeviceNet Specifications" of the Open DeviceNet Vendor Association (ODVA).

For safety information, specifications and operation instructions of the vacuum gauges refer to the appropriate documents ($\rightarrow \square$ [1], [2], [3]).

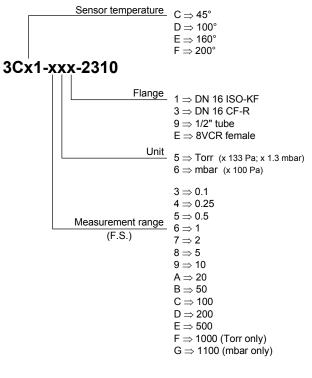

DeviceNet–Interface

The following description of the DeviceNet interface is compliant to the DeviceNet specification of the Open DeviceNet Vendor Association and to the III "Interface Guidelines for DeviceNet Devices On Semiconductor Manufacturing Tools". This manual describes the functionality of a DeviceNet group 2 only slave and supports explicit messaging and the I/O connections change of state/cyclic and polling.

We reserve the right to make technical changes without prior notice.

Product Identification

In all communications with INFICON, please specify the information on the product nameplate. For convenient reference copy that information into the space provided below.



Validity

This document applies to products of the temperature controlled CDG045D, CDG100D, CDG160D and CDG200D series with DeviceNet interface.

Part numbers of standard products are indicated below. OEM products have other part numbers and different parameter settings (e.g. factory setting of setpoint) as defined in the corresponding ordering information.

The part number (PN) can be taken from the product nameplate.

If not indicated otherwise in the legends, the illustrations in this document correspond to CDG045D gauges with the DN 16 ISO-KF vacuum connection. They apply to other vacuum connections and to the other gauges by analogy.

We reserve the right to make technical changes without prior notice.

Trademark

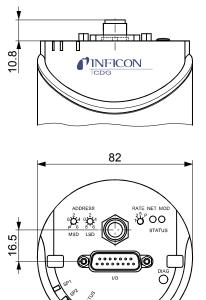
DeviceNet[™] Open DeviceNet Vendor Association Inc.

Patents

EP 1070239, 1040333 US Patents 6528008, 6591687, 7107855, 7140085

Contents

General Information	2
Intended Use	2
DeviceNet–Interface	2
Product Identification	2 3
Validity Trademark	3
Patents	3
Contents	4
1 Technical Data	5
2 Interface Connection	7
3 Operation	8
3.1 Introduction	8
3.2 Front View	8
3.3 Indicators and Switches	9 9
3.3.1 Module Status LED 3.3.2 Network Status LED	9 9
3.3.3 Node Address Switch	9
3.3.4 Data Rate Switch	10
3.4 Abbreviations	10
4 Object Structure	11
4.1 Connection Object	11
4.1.1 Vendor-Specific Object Extension on Instance 2 Poll Connection	11
4.2 Identity Object	12
4.2.1 Class Attributes	12
4.2.2 Instance Attributes	12 13
4.3 S-Device Supervisor Object4.3.1 Class Attributes	13
4.3.2 Instance Attributes	13
4.3.3 Semantics	14
4.3.4 S-Device Supervisor Object States	17
4.3.5 S-Device Supervisor Common Services	17
4.3.6 S-Device Supervisor Object Specific Services	18
4.4 S-Analog Sensor Object	19
4.4.1 Class Attributes	19
4.4.2 Semantics	19
4.4.3 Instance Attributes4.5 Trip Point Object	19 27
4.5.1 Class Attributes	27
4.5.2 Instance Attributes of Trip Point Objects Instance 1 & 2	27
4.5.3 Semantics	28
4.5.4 Common Services	28
4.6 Discrete Output Point Object	29
4.6.1 Class Attributes	29
4.6.2 Instance Attributes of Instance 1 & 2	29
4.6.3 Common Services	29
5 I/O Assembly Object	30
5.1 I/O Assembly Object Instance Data Attribute Format	30
Appendix A: Conversion of a Floating Number According to IEEE 754	31
A: Conversion of a Floating Number According to IEEE 754 B: Typical Start-Up Procedure	31 32
C: Literature	35


For cross-references to other documents, the symbol (\rightarrow \square [XY]) is used.

1	Technical Data				
		Further technical data $\rightarrow \square$ [7]	1], [2], [3].		
	Supply voltage	CDG045D Supply voltage at the DeviceNet con- nector Power consumption while being heated at operating temperature	24 V nominal (11 … 25 V) ≤12 W ≤10 W		
		gauges with DeviceNet interfa supply. Supply voltage for gauge at D-sub connector	DG100D, CDG160D and CDG200D ce require an additional, separate power $\rightarrow \square$ [2], [3]		
		Supply voltage for DeviceNet trans- ceiver at micro style connector Power consumption	24 V nominal (11 25 V) <2 W		
	DeviceNet interface	Fieldbus name Standard applied Communication protocol, data format Interface, physical	DeviceNet $\rightarrow \square$ [5] $\rightarrow \square$ [5] CAN bus		
		Data rate (adjustable via "RATE" switch) Node address (MAC ID)	125 kBaud 250 kBaud 500 kBaud (default) "P" (125 kBaud, 250 kBaud, 500 kBaud programmable via DeviceNet 0 63 _{dec} (default = 63 _{dec})		
		(Adjustable via "ADDRESS", "MSD", "LSD" switches) DeviceNet connector	"P" (0 … 63 programmable via DeviceNet) Micro style, 5 pins, male		
		Cable	Shielded, special DeviceNet cable, 5 conductors $(\rightarrow \blacksquare 7 \text{ and } \square [4])$		
		Cable length, system wiring	according to DeviceNet specifications $(\rightarrow \square [4], [5])$		

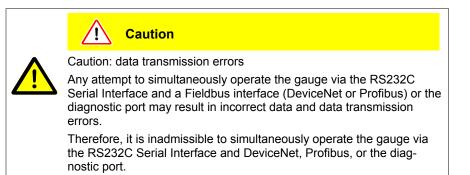
Dimensions [mm]

SF

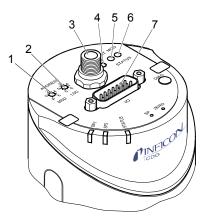
2 Interface Connection

Making a DeviceNet interface cable	For operating the temperature controlled CDGxxxD gauge via DeviceNet, an interface cable conforming to the DeviceNet standard is required. If no such cable is available, make one according to the following indications.				
Cable type	A shielded special 5 conductor cable conforming to the DeviceNet standard has to be used ($\rightarrow \square$ [4] and [5]).				
Procedure	• Make the DeviceNet interface cable according to the following indications:				
	2 Micro style, 5 pins, (DeviceNet) 5 female, soldering side				
	Pin 1 Drain Pin 2 Supply +24 VDC Pin 3 Supply common GND Pin 4 CAN_H Pin 5 CAN_L				
	Pin assignment of the D-Sub 15-pins sensor connector according to the respective operating manual ($\rightarrow \square$ [1], [2], [3]).				
	2 Plug the DeviceNet (and sensor) cable connector into the gauge.				
	DeviceNet cable				

Lock the DeviceNet (and sensor) cable connector.



3 Operation


3.1 Introduction

Via the DeviceNet interface, the following and further data are exchanged in the standardized DeviceNet protocol:

- Pressure reading
- Pressure unit (Torr, mbar, Pa)
- Zero adjustment
- Status and error messages
- Status of the switching functions

3.2 Front View

Position	Function	
1	Address Switch × 10, decimal	
2	Address Switch × 1, decimal	
3	DeviceNet connector	
4	Data Rate Switch	
5	Network Status LED	
6	Module Status LED	
7	"Sensor cable" connector (Power, analog I/O, RS232C I/O and Relay contacts)	

3.3 Indicators and Switches

3.3.1 Module Status LED

NET MOD

Device State LED Stat		Description	
Power Off	Dark	No power applied to device	
Device Self-Test	Flashing green/red	Device is in self-test	
Device Operational	Green	Device is operating normally.	
Unrecoverable Fault	Red	Device has detected an unrecoverable fault	
Recoverable Fault	Flashing red	Device has detected a recoverable fault, e.g. missing DeviceNet power supply	

3.3.2 Network Status LED

NET MOD

The network status LED indicates the status of the DeviceNet communication link.

State	LED state	To indicate
Not Powered/not online	Dark	Device is not online.
		The device has not completed the Duplicate MAC_ID test yet.
		The device may not be powered, look at Module Status LED.
Online, not connected	Flashing green	Device is online but has no connections in the established state.
		 The device has passed the Dup_MAC_ID test, is online, but has no established connections to other nodes.
		 The device is not allocated to a master.
Link OK online, connected	Green	The device is online and has connec- tions in the established state.
		• The device is allocated to a master.
Connection time out	Flashing red	One or more I/O Connections are in the timed out state.
Critical link failure	Red	Failed communication device. The device has detected an error that has rendered it incapable of communicating on the network (Duplicate MAC ID, or Bus–off).

3.3.3 Node Address Switch

During device initialization, the node address switches are read by the device firmware. If the switches specify a valid DeviceNet MAC ID, i.e. a value from 0 ... 63, this value is used as the device MAC ID. If the specified MAC ID differs from the value stored in the device's non-volatile RAM (NVRAM), the new MAC ID will be saved in NVRAM. If the switches specify an invalid DeviceNet MAC ID, i.e. a value greater than 63, the current value stored in the device's NVRAM is used as the device MAC ID.

Example: Value of the DeviceNet MAC ID = 63:

3.3.4 Data Rate Switch

A single, rotary switch is provided for configuring the data rate of the device. The switch has three valid positions for the DeviceNet data rates, 125, 250, and 500 kBaud, where:

Example: Data rate = 250 kBaud:

1 ≙ 125 kBaud	
2 ≙ 250 kBaud	
5 ≙ 500 kBaud	

All remaining switch positions specify software selection of the data rate.

3.4 Abbreviations

Abbr.	Meaning					
NV	Nonvolatile; attribute value is maintained through power cycles					
V	Volatile					
USINT	Unsigned short integer value (Range 0 255)					
INT	Integer value (Range –32767 32768)					
UINT	Unsigned integer value (Range 0 65635)					
UDINT	Unsigned double integer value (Range 0 4'294'967'295)					
FLOAT	Floating point value (Range according to IEEE 754)					
XX _h	Hexadecimal number (Radix = 16)					
XX _d	Decimal number (Radix = 10)					
XXb	Binary number (Radix = 2)					

4 Object Structure

4.1 Connection Object

Class Code 05_h = 05_d

The connection class allocates and manages the internal resources associated with both I/O and explicit messaging connections. The specific instance generated by the connection class is referred to as a connection instance or a connection object.

The following Instances of the connection object are supported:

- Instance 1: Explicit messaging
- Instance 2: I/O polling
- Instance 4: I/O change of state/cyclic I/O connection

Please refer to the DeviceNet specification for further information.

4.1.1 Vendor-Specific Object Extension on Instance 2 Poll Connection

For the selection of the active input assembly the following vendor specific attribute can be used.

Vendor specific extension:

Attribute ID	Access rule	NV/ V	Name	DeviceNet Data type	Description of attribute	Semantics
100	Get/Set		Poll produce assembly instance		Contains the instance num- ber of the assembly used by this connection to send data	8, 9, 10, 11, 12, 13, 14

This vendor-specific attribute facilitates the configuration of the data assembly, the temperature controlled CDGxxxD will send to the DeviceNet master as poll response. It offers the possibility to select a (predefined) data assembly via a configuration tool + EDS file ($\rightarrow \square$ [6]). Attribute 100 allows the user to configure the poll IO data assembly via EDS even if the poll connection of the temperature controlled CDGxxxD is in the established state. The assembly number is stored non volatile. Modifications of the poll produce assembly instance will take effect **only** after a reset of the temperature controlled CDGxxxD.

Thus, definition of the temperature controlled CDGxxxD data assembly can be done in various ways:

1) Standard method (without using attribute 100):

The DeviceNet master configures the "Produced Connection Path" attribute of the poll connection (connection instance 2) when establishing communication to the temperature controlled CDGxxxD. This requires a master to support expanded explicit messaging capabilities.

2) Directly setting attribute 100 e.g. by a configuration tool (e.g. RS networks) + device reset

4.2 Identity Object

Class Code $01_h = 01_d$

4.2.1 Class Attributes

This object provides identification of and general information about the device.

Attribute ID	Access rule	Name	DeviceNet data type	Description of attribute	Semantics of values
1	Get	Revision	UINT	Revision of this object. Note: All class definitions are required to include this class attribute.	The current value assigned to this attribute is one (01). If updates that require an increase in this value are made, then the value of this attribute increases by one.
2	Get	Max instance	UINT	Maximum instance number of an object currently created in this class level of the device.	The largest Instance number of a created object at this class hierarchy level.

4.2.2 Instance Attributes

Attribute ID	Access rule	NV/ V	Name	DeviceNet data type	Description of attribute
1	Get	NV	Vendor ID	UINT	Manufacturer identification Value: 633 (INFICON AG) (default)
2	Get	NV	Device type	UINT	1C _h = Vacuum pressure gauge
3	Get	NV	Product code	UINT	14 (default)
4	Get	NV	Revision	STRUCT	
5	Get	NV	Status	WORD	
6	Get	NV	Serial number	UDINT	
7	Get	NV	Product name	SHORT STRING	CDG045D, CDG100D, CDG160D, CDG200D

The products with different product names only differ in the temperature at which the sensor element is heated up. Different fullscale values of the gauges exist within the same product name. The product code is always 14.

Services

Service Code	Name	Description
5 (05 _h)		0 = last installation, 1 = default installation
14 (0E _h)	Get_Attribute_Single	

4.3 S-Device Supervisor Class Object

Class Code 30_h = 48_d

4.3.1 Class Attributes

Attribute ID	Access rule	Name	DeviceNet data type	Description of attribute	Semantics of values
1	Get	Revision	UINT	Revision of this object	The current value assigned to this at- tribute is one (01). If updates that require an increase in this value are made, then the value of this attribute increases by one.
2	Get	Max instance	UINT	Maximum instance number of an object currently created in this class level of the device.	The largest Instance number of a cre- ated object at this class hierarchy level.

4.3.2 Instance Attributes

Attribute ID	Access rule	NV/ V	Name	DeviceNet data type	Description of attribute
3	Get	NV	Devicetype	SHORT STRING	ASCII Text, "VG" (vacuum gauge)
4	Get	NV	SEMI standard revision level	SHORT STRING	Specifies the revision level of the SEMI S/A network standard to which the device complies (for example "E54-0997").
5	Get	NV	Manufacturer's name	SHORT STRING	"INFICON AG" (default)
6	Get	NV	Manufacturer's model number	SHORT STRING	ASCII text, manufacturer specified
7	Get	NV	Software revision level	SHORT STRING	ASCII text, for example "010000"
8	Get	NV	Hardware revision level	SHORT STRING	ASCII text, for example "010000"
9	Get	NV	Manufacturer's serial number	SHORT STRING	ASCII text
10	Get	NV	Device configuration	SHORT STRING	Depending on device: Examples: 1000 Torr, 100 C 0.1 Torr, 200 C
11	Get	V	Device status	USINT	\rightarrow "Semantics" section below.
12	Get	V	Exception status	BYTE	\rightarrow "Semantics" section below.
13	Get	V	Exception detail alarm	STRUCT of:	A structure of three structures containing a bit mapped representation of the alarm detail
			Common exception detail	STRUCT of:	
			Size 2	USINT	Number of common detail bytes
			Detail 0	ARRAY of:	\rightarrow "Semantics" section below.
			Detail 1	BYTE	\rightarrow "Semantics" section below.
			Device exception detail	STRUCT of:	
			Size 2	USINT	Number of device detail bytes
			Detail 0		\rightarrow "Semantics" section below.
			Detail 1		\rightarrow "Semantics" section below.
			Manufacturer exception detail	STRUCT of:	
			Size 1	USINT	Number of manufacturer detail bytes
			Detail 0	ARRAY of:	Manufacturer Specified

Attribute ID	Access rule	NV/ V	Name	DeviceNet data type	Description of attribute
14	Get	V	Exception detail warning	STRUCT of:	A structure of three structures containing a bit mapped representation of the warning detail
			Common exception detail	STRUCT of:	
			Size 2	USINT	Number of common detail bytes
			Detail 0	ARRAY of:	\rightarrow "Semantics" section below.
			Detail 1	BYTE	\rightarrow "Semantics" section below.
			Device exception detail	STRUCT of:	
			Size 3	USINT	Number of device detail bytes
			Detail 0	BYTE	\rightarrow "Semantics" section below.
			Detail 1	BYTE	\rightarrow "Semantics" section below.
			Detail 2	BYTE	\rightarrow "Semantics" section below.
			Manufacturer exception detail	STRUCT of:	
			Size 1	USINT	Number of manufacturer detail bytes = 1
			Detail 0	ARRAY of:	Manufacturer specified
15	Set	NV	Alarm enable	BOOL	\rightarrow "Semantics" section below.
16	Set	NV	Warning enable	BOOL	\rightarrow "Semantics" section below.
101	Get	NV	Software revision base unit	SHORT STRING	ASCII text, for example "010000"
102	Get	V	Run hours	UINT	1 = 1 hour

4.3.3 Semantics

Device status

This attribute represents the current state of the device. Its value changes as the state of the device changes. The following values are defined:

Attribute value	State
0	Undefined
1	Self testing
2	Idle
3	Self-test exception
4	Executing
5	Abort
6	Critical fault

In case of a self-test exception restart the device with a reset out of the box (identity object class 1, instance 1, service 5, service target value: 1).

Exception status

A single byte attribute whose value indicates the status of the alarms and warnings for the device. The device supports the expanded mode.

For the *expanded mode*, bit seven of exception status attribute is set to one; exceptions are reported through the communication of this exception status attribute, formatted as specified in the table below. In addition, the exception detail attributes are supported. The exception status bits are determined by a logical "OR" of the related exception detail bits, as indicated.

Exception status bitmap

Bit	Function
0	ALARM / device-common ¹⁾
1	ALARM / device-specific
2	ALARM / manufacturer-specific
3	reserved, set to 0
4	WARNING / device-common ¹⁾
5	WARNING / device-specific
6	WARNING / manufacturer-specific
7	1 ≙ Expanded Method

¹⁾ The alarm or warning is not specific to the device type or device type manufacturer.

Exception detail alarm and exception detail warning

The formats of these two attributes are identical. Therefore, they are described together:

Attributes that relate the detailed status of the alarms or warnings associated with the device. Each attribute is a structure containing three members; these three members, respectively relate the detailed status of exceptions that are common (i.e., not device-specific), device-specific but not manufacturer-specific, and manufacturer-specific. The common and device-specific detail are defined below. A manufacturer-specific detail has a length of 1 byte. A SIZE value of one indicates that one byte detail is defined for the associated exception detail structure.

Each of the three structure members is defined as a structure containing an ordered list (i.e., array) of bytes of length SIZE, and an unsigned integer whose value is SIZE. Each of the bytes in each array has a specific mapping. This mapping is formatted as 8 bits representing 8 independent conditions, whereas a value of 1 indicates that the condition is set (or present), and a value of 0 indicates that the condition is cleared (or not present). Note that if a device does not support an exception detail, the corresponding bit is never set. The bitmaps for alarms and warnings in the corresponding attributes are structured in parallel so that a condition may have either alarm or warning set depending on severity. If a condition inherently cannot be both alarm and warning, then the parallel bit position corresponding to the other state will remain "0".

The existence of an exception detail variable structure is dependent on the value of the Exception Status Attribute; the existence of an exception detail variable structure is only required if bit seven of the Exception Status attribute is set to 1 (indicating Expanded method reporting) and the bit (among bits zero through six) of the Exception Status attribute corresponding to the particular exception type is also set to 1.

Common exception detail This structure relates exception conditions (i.e. alarms or warnings) which are common to all devices within the *Hierarchy of Semiconductor Equipment Devices*. The Detail element of the structure is an ordered list (i.e., array) of bytes of length [SIZE] which is the value of the structure element Size. For each byte in the Detail field, all bits which are not identified are reserved for future standardization. The first byte in this attribute is CommonExceptionDetail[0]. Additional exception details, if provided, are named CommonExceptionDetail[1], ... CommonExceptionDetail[SIZE]. The specific exception associated with each of the bitmaps is given in the table below. The SIZE for this revision is two (2).

Device exception detail

This structure, similar in form to common exception detail, relates exception conditions which are specific to individual devices on the network and are defined in the following. The detail element of the structure is an ordered list (i.e. array) of bytes of length [size = 2] which is the value of the structure element size.

Manufacturer exception detail

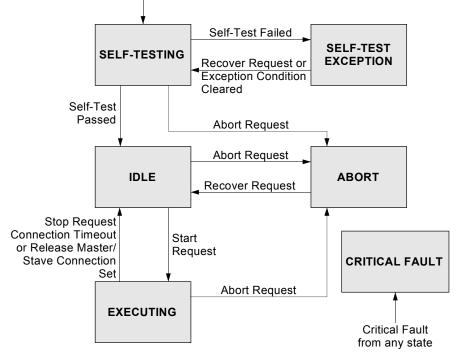
This structure, similar in form to Common Exception Detail, relates exception conditions which are specific to the manufacturers of individual devices on the network. There is one byte manufacturer exception details defined. The Detail element of the structure is an ordered list (i.e. array) of bytes of length [size = 1] which is the value of the structure element size.

Exception detail alarm

Data component	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Common exception detail alarm size	0	0	0	0	0	0	1	0
Common exception detail alarm 0	0	0	0	Data memory	Nonvolatile memory	Code memory	0	0
Common exception detail alarm 1	0	0	0	0	0	0	0	0
Device exception detail alarm size	0	0	0	0	0	0	1	0
Device exception detail alarm 0	S-Analog sensor instance 1, sensor alarm byte 0							
Device exception detail alarm 1	S-Analog sensor instance 1, sensor alarm byte 1							
Manufacturer exception detail alarm size	0	0	0	0	0	0	0	1
Manufacturer exception detail alarm 0	0	0	0	0	0	0	0	SerCom Alarm

Exception detail warning

Data component	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Common exception detail warning size	0	0	0	0	0	0	1	0
Common exception detail warning 0	0	0	0	Data memory	Nonvolatile memory	Code memory	0	0
Common exception detail warning 1	0	0	0	0	0	0	0	0
Device exception detail warning size	0	0	0	0	0	0	1	1
Device exception detail warning 0			S-Analo	g sensor insta	nce 1, status e	extension		
Device exception detail warning 1	S-Analog sensor instance 1, sensor warning byte 0							
Device exception detail warning 2			S-Analog s	ensor instance	e1, sensor war	ning byte 1		
Manufacturer exception detail warning size	0	0	0	0	0	0	0	1
Manufacturer exception detail warning 0	0	0	0	0	0	0	0	SerCom Warning


Alarm enable and warning enable These boolean attributes are used to enable (1) or disable (0) the S-Device supervisor object's process of setting exception bits. When disabled, corresponding bits are never set; and, if they were set, disabling clears them. Also, alarm and warning states are not retained; when enabled, bits will be set only if the corresponding

condition is true.

The default state for these enable attributes is enabled (1).

4.3.4 S-Device Supervisor Object States

Power Applied, or Reset Request from any state except CRITICAL FAULT, or Perform Diagnostics Request from any state except CRITICAL FAULT or ABORT

Abort - Used to transition the device application objects to the aborted state. This service request may be (and generally will) originated internally, from application objects.

Recover - Used to transition the device application objects, out of the abort state, to the idle state. This service request may be originated internally, from application objects.

Perform_Diagnostics - Used to instruct the DS object to perform a diagnostic test.

4.3.5 S-Device Supervisor Common Services

Service Code	Service Name	Description of Service
0E _h	Get_Attributes_Single	Returns the contents of the specified attribute.
10 _h	Set_Attributes_Single	Modifies an attribute value.
05 _h	Reset	Resets the device to the Self-Testing state.
06 _h	Start	Starts the device execution.
07 _h	Stop	Moves the device to the Idle state.

The device transitions from the IDLE state to the EXECUTING state by a START Request (Service Code 06_h) or by the receipt of the first valid I/O data.

You will not get any valid measurement values from the device until this service has been requested or the I/O-poll message has been received.

4.3.6 S-Device Supervisor Object Specific Services

Service Code	Service Name	Description of Service
4B _h	Abort	Moves the device to the Abort state
4C _h	Recover	Moves the device out of the Abort state
4E _h	Perform_Diagnostics	Causes the device to perform a set of diagnostic routines

• DS Object Service Parameter dictionary

Parameter	Form	Description
TestID	USINT	Type and possibly detail of diagnostic test to be performed

TestID parameter

The following values are defined for the TestID parameter for the Perform_Diagnostics Service Request:

Attribute Value	State
0	Standard

Type "Standard" is specified if there is only one type of diagnostic defined or if there are more than one including a type standard.

Explanation to Service code 4E_h

4.4 S-Analog Sensor Object Class Code $31_h = 49_d$

4.4.1 Class Attributes

Attribute ID	Access rule	Name	DeviceNet data type	Description of attribute	Semantics of values
1	Get	Revision	UINT	Revision of this object Note: All class definitions are required to include this class attribute.	The current value assigned to this attrib- ute is one (01).
2	Get	Max instance	UINT	Maximum instance number of an object currently created in this class level of the device.	The largest Instance number of a created object at this class hierarchy level.
94	Get	Active value	INT or specified by data type	Is used by assemblies to produce this class-level attribute, instead of the value (attribute ID 6) of the S-Analog sensor instances.	
95	Get	Active instance number	UINT	Identifies the object instance that is providing the value which is copied into the active value for all input assemblies and the alarm/warning exception details for the S-Device supervisor object.	Default = 1
	_			\rightarrow Behavior section.	
96	Get	Number of gauges	USINT	Identifies the number of gauge instances present in the device.	
99	Get	Subclass	UINT	Identifies a subset of additional class attributes, services and behaviors.	1 ≙ Instance selector

4.4.2 Semantics

	Active value	Assemblies or connections may produce this class-level attribute, instead of the value (attribute ID 6) of the active S-Analog sensor instance. The S-Analog sensor class-level attribute active instance number identifies the object instance that is currently active and providing the value to the active value class-level attribute which is, in turn, produced by the input assemblies that have active value as a member.
	Active instance number	The device internally modifies this attribute, as required, to identify the S-Analog sensor object instance providing the value member which is copied into the active value for all input assemblies and the alarm/warning exception details for the S-Device supervisor object.
		\rightarrow Behavior for more information on the mechanism.
	Number of gauges	This attribute is used to determine the size of all input assemblies within a node. \rightarrow respective device profile for its usage within a device type.
4.4.3	Instance Attributes	Two S-Analog sensor instances (instance 1 and instance 2) are available. Instance 1 represents the physical sensor reading of the capacitance diaphragm gauge. Instance 2 represents the physical sensor reading of the atmosphere pressure sensor.

4.4.3.1 Instance Attributes of Instance 1

Following is the instance 1 with the subclass extension of the capacitance manometer (diaphragm gauge) part of the gauge. Many different types of gauges are available. The behavior of all gauges is the same, but the fullscale value is different.

Attribute ID	Access rule	NV/ V	Name	DeviceNet data type	Description of attribute	Semantics of values
3	Set /Cond. \rightarrow below	NV	Data type	USINT	Determines the data type of <i>value</i> and all related attributes as speci- fied in this table.	$ → "Semantics" section below. Int \triangleq C3_h [default] float \triangleq CA_h$
4	Set → below	NV	Data units	UINT	Determines the units context of <i>value</i> and all re- lated attributes.	$ \rightarrow "Semantics" section below. \\ Supported Values: \\ Counts \triangleq 1001_h [default] \\ mbar \triangleq 1308_h \\ Torr & \triangleq 1301_h \\ Pascal & \triangleq 1309_h \\ \end{cases}$
5	Get	V	Reading valid	BOOL	Indicates that the <i>value</i> attribute con- tains a valid value.	0 = invalid 1 = valid (invalid: e.g., not warmed up yet)
6	Get	V	Value	INT or specified by <i>data type</i>	Analog input value	The corrected, converted, calibrated final value of the sensor. \rightarrow "Semantics" section below.
7	Get	V	Status	BYTE	Alarm and warning state of this object instance.	\rightarrow "Semantics" section below.
8	Set	NV	Alarm enable	BOOL	Enables the setting of the alarm status bits	0 = disable [default] 1 = enable
9	Set	NV	Warning enable	BOOL	Enables the setting of the warning status bits	0 = disable [default] 1 = enable
10	Get	NV	Full Scale	INT or specified by <i>data type</i>	The <i>value</i> of full scale for the sensor.	The value of attribute <i>value</i> corresponding to the full scale calibrated measurement of the sensor. [default] = maximum allowable value for the <i>data type</i>
11	Get	NV	Offset-A data type	USINT	Determines the data type of attribute <i>offset-A</i>	[default] = INT (C3 _h)
12	Set	NV	Offset-A	Specified by attribute 11	An amount added prior to <i>gain</i> to derive <i>value</i>	This value could be read at the measurement device itself after execution of zero adjust service. 0 = [default]
17	Set	NV	Alarm trip point high		Determines the value above which an alarm condition will occur	[default] = Maximum value for its data type.
18	Set	NV	Alarm trip point low	INT or specified by <i>data type</i>	Determines the value below which an alarm condition will occur	[default] = Minimum value for its data type.
19	Set	NV	Alarm hysteresis	INT or specified by <i>data type</i>	Determines the amount by which the <i>value</i> must recover to clear an alarm condition	[default] = 0

Attribute ID	Access rule	NV/ V	Name	DeviceNet data type	Description of attribute	Semantics of values
21	Set	NV	Warning trip point high	INT or specified by <i>data type</i>	Determines the <i>value</i> above which a warning condition will occur	[default] = Maximum value for its data type.
22	Set	NV	Warning trip point Iow	INT or specified by <i>data type</i>	Determines the <i>value</i> below which a warning condition will occur	[default] = Minimum value for its data type.
23	Set	NV	Warning hysteresis	NT or specified by <i>data type</i>	Determines the amount by which the <i>value</i> must recover to clear a warning condition	[default] = 0
25	Set	NV	Safe state	USINT	Specifies the be- havior for the <i>value</i> for states other than execute	\rightarrow "Semantics" section below. [default] = 0
26	Set	NV	Safe value	INT or specified by <i>data type</i>	The value to be used for safe state = safe value	\rightarrow "Semantics" section below. [default] = 0
32	Get	NV	Overrange	INT or specified by <i>data type</i>	Specifies the hig- hest valid <i>value</i>	The value above which attribute <i>reading valid</i> is set to invalid. [default] = maximum allowable value for the <i>data type</i>
33	Get	NV	Underrange	INT or specified by <i>data type</i>	Specifies the lowest valid <i>value</i>	The value below which attribute reading valid is set to invalid. [default] = minimum allowable value for the <i>data type</i>
93	Get	V	Sensor temperature	Real	The temperature in Celsius at which the sensor has warmed up	
94	Get	V	Sensor warning	Struct of byte	Bit definitions of sensor warnings	0 = [default] → "Semantics" section below
95	Get	V	Sensor alarm	Struct of byte	Bit definitions of sensor alarms	0 = [default] → "Semantics" section below
96	Get	V	Status extension	BYTE	Bit-mapped byte providing additional status bits of an S- Analog sensor instance.	0 = [default] → "Semantics" section below
99	Get	NV	Subclass	UINT	Identifies a subset of additional in- stance attributes, services and be- haviors.	3 = Capacitance Manometer
100	Set	NV	Offset vendor specific	INT or specified by <i>data type</i>	Customer specified offset which will be added to the offset- A value from zero adjust service	
101	Set	NV	Filter	USINT		0 = Dynamic [default] 1 = Fast 2 = Slow

4.4.3.2 Semantics

Data type All Data Type attributes use the enumerated values integer or float .									
	The Data Type value will be set automatically based upon the first valid I/O con nection established by the device.								
	If no established I/O connections exist, which include an attribute from this object,								
		<i>Data Type</i> attribute is settable provided that the object is in the <i>Idle State</i> .							
		sing data type integer in combination with a pressure unit (mbar, Torr or Pa) ously not produce reasonable values below 1.							
Data unit	The Dat	a Unit is only settable in the IDLE state.							
Value		nalog sensor object instance derives a reading from a physical analog sen-							
	sor. The attribute	e reading is converted to the data type and units specified for the value							
	attribute								
Status	A hit ma	apped byte which indicates the Alarm and Warning Exception status of the							
		istance. The following definition applies:							
	Bit	Definition							
	0	High Alarm Exception: 0 = cleared 1 = set							
	1	Low Alarm Exception: 0 = cleared 1 = set							
	2	High Warning Exception: 0 = cleared 1 = set							
	3	Low Warning Exception: 0 = cleared 1 = set							
	4	Reserved							
	5	Reserved							
	6	Reserved							
	7	Reserved							

Safe state

This attribute specifies what value will be held in *value* for states other than executing. The purpose of this mechanism is to allow other devices, who may be using this *value* to transition to (or remain in) a safe state in the event of this device transitioning to a FAULT, IDLE, or ABORT state. The following values are defined:

Attribute value	State
0	Zero
1	Full scale
2	Hold last value
3	Use safe value

Safe value

For safe state set to use safe value, this attribute holds the value to which the *value* attribute will be set for object instance states other than executing.

Sensor alarm

16 Bits are used as sensor faults. Sensor alarm byte 0 is mapped to the device exception detail alarm 0, sensor alarm byte 1 is mapped to the device exception detail alarm 1.

Data component	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Sensor alarm byte 0	0	0	0	0	0	0	0	0
Sensor alarm byte 1	High alarm exception	Low alarm exception	0	0	0	0	Electronics failure	0

Sensor warning

16 Bits are used as sensor warnings. Sensor warning byte 0 is mapped to the device exception detail warning 1, sensor warning byte 1 is mapped to the device exception detail warning 2.

Data component	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Sensor warning byte 0	0	0	0	0	0	0	0	Not at temperature
Sensor warning byte 1	High warning exception	Low warning exception	0	0	0	0	Electronics warning	0

Status extension

8 Bits providing the current sensor alarm state of the instance. They are mapped to device exception detail warning 0.

Data component	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Sensor alarm byte 0	0	0	0	0	0	Underrange exceeded	Overrange exceeded	Reading invalid ¹⁾
¹⁾ Logical inversion of roading valid								

Logical inversion of reading valid

4.4.3.3 Common Services

The S-Analog Sensor Object provides the following common services:

Service Code	Service Name	Description of Service
0E _h	Get_Attribute_Single	Returns the contents of the specified attribute.
10 _h	Set_Attribute_Single	Modifies an attribute value.

4.4.3.4 Object-Specific Services

The S-Analog Sensor Object provides the following common services:

Service Code	Service Name	Description of Service
4B _h	Zero_Adjust	Used to calibrate the zero pressure value. 2 = zero adjust

The Zero_Adjust service is used to cause the S-Analog sensor object device to modify its Offset-A attribute value (instance 1) based upon manufacturer specific algorithms. The target value specified in the service request represents the actual parametric measurement that the physical sensor should be reporting at the time of the request.

There are no state transitions associated with the invocation of this service. It is, therefore, incumbent upon the user to establish the device into the desired configuration prior to, and during, the execution of these services. This will generally involve exposing the sensor to a known environment and treating the values read during execution of the services accordingly.

A success service response indicates that the service was accepted and the application process started.

Zero adjust algorithm To perform the Zero_Adjust Request pump down to a value 2 decades below the minimum pressure range of the gauge and then start the Zero_Adjust Request Service with a target value of "0".

Zero_Adjust request service	Parameter	Data type	Description	Semantics of values
data field parameters	Zero_Adjust	UINT or	The target	The value to which the attribute
	parameter	FLOAT	value for the	6, value, will be set (always 0).
	or target	depending on	zero calibration	If not specified, the default value
	value	data type		of zero is used.

4.4.3.5 Behavior

Data type

The following behavior with respect to Data Type applies:

The data type value will be set automatically based upon the first valid I/O connection established by the device.

If no established I/O connections exist, which include an attribute from this object, then the *Data Type* attribute is settable provided that the object is in the *Idle State*. The following example demonstrates this behavior:

A device specifies an instance of the S-Analog sensor object as well as two static assembly object instances, both with data attribute components mapped to this object instance. Assembly object instance ID 1 specifies INT data types and assembly object instance ID 2 specifies REAL data types.

After the device is on-line, it is configured with an I/O connection to assembly instance ID 2. When the connection transitions to the *Established State*, this object instance attribute *Data Type* is automatically set with the value for REAL before any data is communicated to, or from, the object instance. Any subsequent attempt to connect to assembly instance ID 1 would then be rejected and result in an INVALID ATTRIBUTE VALUE error with the additional error code indicating the ID of the offending attribute, which in this case would be the connection path.

4.4.3.6 Instance Attributes of Instance 2 / Atmosphere Pressure Sensor

Attribute ID	Access rule	NV/ V	Name	DeviceNet data type	Description of attribute	Semantics of values
3	→ "Semantics"	NV	Data type	USINT	Determines the data type of <i>value</i> and all related attributes as specified in this table.	→ "Semantics" section below [default] = INT
4	$\stackrel{ ightarrow}{ m :Semantics"}$	NV	Data units	USNIT	Determines the units con- text of <i>value</i> and all related attributes.	[default] = Counts
5	Get	V	Reading valid	BOOL	Indicates that the <i>value</i> attribute contains a valid value.	0 = invalid 1 = valid (always set)
6	Get	V	Value	INT or REAL	Analog input value.	The corrected, converted, calibrated final value of the sensor. → "Semantics" section
7	Get	V	Status	BYTE	Alarm and warning state of this object instance.	= 0
10	Get	NV	Full scale	INT or REAL	The <i>value</i> of full scale for the sensor.	[default] = maximum allowable value for the <i>data type</i>
25	Set	NV	Safe state	USINT	Specifies the behavior for the <i>value</i> for states other than execute.	\rightarrow "Semantics" section below [default] = 0
26	Set	NV	Safe value	INT or speci- fied by <i>data</i> <i>type</i>	The Value to be used for safe state = safe value	→ "Semantics" section below [default] = 0
32	Get	NV	Overrange	INT or REAL	Specifies the highest valid value.	The value above which attribute <i>reading valid</i> is set to invalid. [default] = maximum allowable value for the <i>data type</i>
33	Get	NV	Under- range	INT or REAL	Specifies the lowest valid value.	The value below which attribute reading valid is set to invalid. [default] = minimum allowable value for the data type
94	Get	V	Sensor warning	Structure of byte	Bit definitions of sensor warnings.	default = 0 \rightarrow "Semantics" section below
95	Get	V	Sensor alarm	Structure of byte	Bit definitions of sensor alarms.	default = 0 → "Semantics" section below
96	Get	V	Status extension	Byte	Bit-mapped byte providing additional status bits of an S-Analog sensor instance.	default = 0 \rightarrow "Semantics" section below
99	Get	V	Subclass	UINT	Identifies a subset of addi- tional instance attributes, services and behaviors.	3 = Capacitance Diaphragm Gauge

4.4.3.7 Semantics of S-Analog Sensor Instance 2

Data type	\rightarrow Instance 1
Data units	\rightarrow Instance 1
Value	\rightarrow Instance 1
Safe state	\rightarrow Instance 1
Safe value	\rightarrow Instance 1

Sensor warning

16 Bits are used as sensor warnings.

Data component	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Sensor warning byte 0	0	0	0	0	0	0	0	0
Sensor warning byte 1	0	0	0	0	0	0	0	0

Sensor alarm

16 Bits are used as sensor faults.

Data component	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Sensor alarm byte 0	0	0	0	0	0	0	0	0
Sensor alarm byte 1	0	0	0	0	0	0	0	0

Status extension

8 Bits providing the current sensor alarm state of the instance

Data component	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Sensor alarm byte 0	0	0	0	0	0	Underrange exceeded = 0	Overrange exceeded = 0	Reading invalid ¹⁾ = 0

¹⁾ Logical inversion of reading valid

4.4.3.8 Common Services of S-Analog Sensor Instance 2

The S-Analog sensor object provides the following common services:

Service code	Service name	Description of service
0E _h	Get_Attribute_Single	Returns the contents of the specified attribute.
10 _h	Set_Attribute_Single	Modifies an attribute value.

4.4.3.9 User Atmosphere Adjust Service

Service Code	Service Name	Description of Service
32 _h	User Atmosphere Adjust	Performs an Atmosphere Adjust for the ATM- Sensor

There are no state transitions associated with the invocation of this service. It is, therefore, incumbent upon the user to establish the device into the desired configuration prior to, and during the execution of this service. This will generally involve exposing the sensor to a known environment and treating the values read during execution of the services accordingly.

A success service response indicates that the service was accepted and the application process started.

To perform the User Atmosphere Adjust Request vent the gauge to atmosphere and then start the User Atmosphere Adjust Service without any target value. The pressure value of the atmospheric pressure sensor is then tracked to the value of the CDG.

4.5 Trip Point Object

Class Code $35_h = 53_d$

The Trip Point Object models the action of trip points (two relays) of the CDG (corresponding to physical outputs) (Discrete Output Object). A trip point value, designated as a high or low trip point, is compared to the specified source value. This trip point is intended to be used as a process control indicator.

4.5.1 Class Attributes

Attribute ID	Access rule	Name	DeviceNet data type	Description of attribute
1	Get	Revision	UINT	Revision of this object. Note: All class definitions are required to include this class attribute.
2	Get	Max instance	UINT	Maximum instance number of an object currently created in this class level of the device.

4.5.2 Instance Attributes of Trip Point Objects Instance 1 & 2

Attribute ID	Access rule	NV/ V	Name	DeviceNet data type	Description of attribute	Semantics of values
5	Set	NV	Low trip point	INT or based data type attribute	Defines the value at or be- low which a trip point con- dition will occur.	\rightarrow "Semantics" section below [default] = 0
6	Get	NV	Low trip enable	BOOL	Enables the low trip point setting.	[default] = 0
7	Get	V	Status	BOOL	State of this object instance.	0 = trip point condition does not exist (unasserted) 1 = trip point condition exists (asserted)
10	Set	NV	Hysteresis	Same as high/low point data type	Determines the amount by which the input must re- cover to clear a trip point condition.	→ "Semantics" section [default] = 0
12	Get	NV	Destination	Packed EPATH	Specifies the path of the destination attribute whose value will be set by <i>output</i> .	Path to attribute 3 of Instance 1 or 2 of DOP Object.
13	Get	V	Output	BOOL	Output of the object the value of which is sent to <i>destination.</i>	= Status of the relay
14	Get	NV	Source	Packed EPATH	Specifies the path of the source attribute whose value is retrieved for <i>Input</i> .	Path to attribute 6 of instance 1 of S- analog sensor object
15	Get	V	Input	INT or speci- fied by <i>data</i> <i>type</i>	Input to the object whose value is retrieved from source.	Value of attribute 6 of instance 1 of S- analog sensor object
16	Get	NV	Data units	ENGUNITS	Units of input, trip point.	
17	Get	NV	Data type	USINT	Data type of input.	[default] = INT
101	Set	NV	Percentage of ATM	REAL	Multiplier for ATM control.	If high trip point enabled, this value will be multiplied with pressure value from S-Analog sensor instance 2 (ATM sensor) copied into trip point high
102	Get	V	High trip point	INT or based data type attribute	Defines the value at or above which a trip point condition will occur.	[default] = 0
103	Get	NV	High trip enable	BOOL	Enables the high trip point setting.	[default] = enabled

4.5.3 Semantics

Setpoint function	set to zero and the funct Low trip point is compare Status will be set if the ir	et, the setpoint function is used (automatically attr. 101 is ionality ATM detection is disabled). ed to the <i>input</i> value to generate a trip point condition. nput value is at or below the <i>low trip point</i> . s above the low trip point and hysteresis, the <i>status</i> will be			
ATM detection	This functionality is used to compare the pressure measured by the CDG with the atmospheric pressure.				
	Attribute 101 is used to define a value "Percentage of Atmosphere". This value will be multiplied with the pressure from the S-Analog sensor instance 2 (ATM sensor). Then the result will be copied into attr. 102 = ATM high trip point. If a value is written to percentage of atmosphere, the low trip enable is set to zero.				
	Status will be set if the ir	nput value is at or above the high trip point.			
	If the pressure decrease reset.	s below the high trip point - hysteresis, the <i>status</i> will be			
Hysteresis	The Hysteresis value sp in order to clear a trip po	ecifies the amount by which the Input value must transition int condition.			
	The following relationshi	p demonstrates the logic for a Low Trip Point:			
	For Status not set:	If (<i>Input</i> ≤ <i>Trip Point Low</i>) Then set <i>Status</i>			
	For Status set:	If (Input > Trip Point Low +Hysteresis) Then clear Status			

4.5.4 Common Services

The trip point object provides the following common services:

Service code	Service name	Description of service
0E _h	Get_Attribute_Single	Returns the contents of the specified attribute.
10 _h	Set_Attribute_Single	Modifies an attribute value.

4.6 Discrete Output Point Class Code $09_h = 09_d$ Object

4.6.1 Class Attributes

Attribute ID	Access rule	Name	DeviceNet data type	Description of attribute
1	Get	Revision	UINT	Revision of this object. Note: All class definitions are required to include this class attribute.
2	Get	Max instance	UINT	Maximum instance number of an object currently created in this class level of the device.

4.6.2 Instance Attributes of Instance 1 & 2

Attribute ID	Access rule	Name	DeviceNet data type	Description of attribute	Semantics of values
3	Get	Value	BOOL	Output point value.	0 = Off
					1 = On (activated)

4.6.3 Common Services

The discrete output point object provides the following common services:

Service code	Service name	Description of service
0E _h	Get_Attribute_Single	Returns the contents of the specified attribute.

5 I/O Assembly Object

Class Code 04_h = 04_d

A collection of assembly objects allows the sending of attributes from different application objects in one message (i.e. Polling I/O).

5.1 I/O Assembly Object Instance Data Attribute Format

The *S*-Analog Sensor object definition specifies a behavior that modifies the *Data Type* of certain attributes based upon the first valid I/O connection established to an Assembly Object instance. In order to maintain consistency, this device type will only allow connections to either INT or REAL based Assembly instances. Once a valid connection is established, attempts to configure connections, or otherwise access data, to a different type of Assembly instance will return a RESOURCE UNAVAILABLE error.

0 0 0 0 0 0 0 Status Inst. 2 Status Inst. 2 Inst. 2 <thinst. 2<="" th=""> Inst. 2<</thinst.>	Instance	Туре	Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit	2 E	Bit 1	Bit	0
(default) 1 - 2 INT Pressure Value 3 Input 0 1 0 0 0 0 0 1 Trip Trip Trip Status Inst. 2 Inst. 2 </td <td>1</td> <td>Input</td> <td>0 - 1</td> <td></td> <td colspan="7">INT Pressure Value</td>	1	Input	0 - 1		INT Pressure Value								
3 Input 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 <th1< th=""> 1 1 1</th1<>	2	Input	0		Exception Status								
1 0 0 0 0 0 0 Trip Status Inst. 2 Tri	(default)		1 - 2		INT Pressure Value								
0 0 0 0 0 0 0 Status Inst. 2 Inst. 2 <thinst. 2<="" th=""> Inst. 2<</thinst.>	3	Input	0		Exception Status								
$ \begin{array}{ c c c c c } \hline 4 & Input & 0 - 3 & REAL Pressure Value \\ \hline 5 & Input & 0 & Exception Status \\ \hline 1 - 4 & REAL Pressure Value \\ \hline 6 & Input & 0 & I & Exception Status \\ \hline 1 & 0 & 0 & 0 & 0 & 0 & Status \\ \hline 1 & 0 & 0 & 0 & 0 & 0 & Status \\ \hline 2 - 5 & REAL Pressure Value \\ \hline 8 & Input & 0 & Exception Status \\ \hline 9 & Input & 0 - 1 & Active Instance \\ \hline 2 - 3 & INT Active Pressure Value \\ \hline 10 & Input & 0 & Exception Status \\ \hline 1 - 2 & Active Instance \\ \hline 3 - 4 & INT Active Pressure Value \\ \hline 11 & Input & 0 & Exception Status \\ \hline 2 - 3 & INT Active Pressure Value \\ \hline 11 & Input & 0 & Exception Status \\ \hline 2 - 3 & INT Active Pressure Value \\ \hline 11 & Input & 0 & Exception Status \\ \hline 2 - 3 & Active Instance \\ \hline 2 - 3 & Active Instance \\ \hline 4 - 5 & INT Active Pressure Value \\ \hline 12 & Input & 0 - 1 & Active Instance \\ \hline 13 & Input & 0 & Exception Status \\ \hline 1 - 2 & Active Instance \\ \hline 2 - 5 & REAL Active Pressure Value \\ \hline 13 & Input & 0 & Exception Status \\ \hline 1 - 2 & Active Instance \\ \hline 1 - 2 & Active Instance \\ \hline 2 - 5 & REAL Active Pressure Value \\ \hline 14 & Input & 0 & REXCEPTION Status \\ \hline 1 & 0 & 0 & 0 & 0 & 0 & Status \\ \hline 1 & 0 & 0 & 0 & 0 & Status \\ \hline 1 & 0 & 0 & 0 & 0 & Status \\ \hline 1 & 0 & 0 & 0 & 0 & 0 & Status \\ \hline 1 & 0 & 0 & 0 & 0 & 0 & Status \\ \hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 &$			1	0		0	0	0		0	0	Status	Trip Status Inst. 1
$ \begin{array}{ c c c c c c } \hline 5 & Input & 0 & I-4 & REAL Pressure Value \\ \hline 6 & Input & 0 & I & Exception Status \\ \hline 1 & 0 & 0 & 0 & 0 & 0 & Status \\ \hline 2 - 5 & REAL Pressure Value \\ \hline 2 - 5 & REAL Pressure Value \\ \hline 8 & Input & 0 & Exception Status \\ \hline 9 & Input & 0 - 1 & Active Instance \\ \hline 2 - 3 & INT Active Pressure Value \\ \hline 10 & Input & 0 & Exception Status \\ \hline 1 - 2 & Active Instance \\ \hline 3 - 4 & INT Active Pressure Value \\ \hline 11 & Input & 0 & Exception Status \\ \hline 1 & 0 & 0 & 0 & 0 & 0 & Trip \\ \hline 2 - 3 & INT Active Pressure Value \\ \hline 10 & Input & 0 & Exception Status \\ \hline 1 & 0 & 0 & 0 & 0 & 0 & Status \\ \hline 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 \\ \hline 1 & 0$			2 - 3					INT F	ress	ure Value			
$ \begin{array}{ c c c c c } \hline 5 & \ \mbox{Input} & 0 & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	4	Input	0 - 3					REAL	Pres	sure Value			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5		0					Exc	eptio	n Status			
$\begin{array}{ c c c c c c } \hline 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 2 - 5 & & REAL Pressure Value \\ \hline 2 - 5 & & REAL Pressure Value \\ \hline 2 - 3 & & & & & & & & & \\ \hline 10 & Input & 0 & & & & & & & & & \\ \hline 12 & Input & 0 & & & & & & & & & \\ \hline 10 & Input & 0 & & & & & & & & & & \\ \hline 11 & Input & 0 & & & & & & & & & & & \\ \hline 12 & Input & 0 & & & & & & & & & & & \\ \hline 11 & Input & 0 & & & & & & & & & & & & \\ \hline 11 & Input & 0 & & & & & & & & & & & & \\ \hline 11 & Input & 0 & & & & & & & & & & & & \\ \hline 12 & Input & 0 - 1 & & & & & & & & & & & & & \\ \hline 12 & Input & 0 - 1 & & & & & & & & & & & & & \\ \hline 12 & Input & 0 - 1 & & & & & & & & & & & & & \\ \hline 13 & Input & 0 & & & & & & & & & & & & & & \\ \hline 13 & Input & 0 & & & & & & & & & & & & & & & \\ \hline 14 & Input & 0 & & & & & & & & & & & & & & & & \\ \hline 14 & Input & 0 & & & & & & & & & & & & & & & & & $			1 - 4					REAL	Pres	sure Value			
$ \begin{array}{ c c c c c c } \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & Status Inst. 2 & Statu Inst. 2 & Status Inst. 3 & Status Inst. 4 & Status Inst. 4 & Status Inst. 4 & Status Inst. 4 & Status I$	6	Input	0					Exc	eptio	n Status			
$ \begin{array}{ c c c c c c } \hline 8 & \mbox{input} & 0 & & \mbox{Exception Status} \\ \hline 9 & \mbox{input} & 0 & 1 & & \mbox{Active Instance} \\ \hline 2 - 3 & \mbox{INT Active Pressure Value} \\ \hline 10 & \mbox{Input} & 0 & & \mbox{Exception Status} \\ \hline 1 - 2 & & \mbox{Active Instance} \\ \hline 3 - 4 & \mbox{INT Active Pressure Value} \\ \hline 11 & \mbox{Input} & 0 & & \mbox{Exception Status} \\ \hline 1 & \mbox{Input} & 0 & & \mbox{Exception Status} \\ \hline 1 & \mbox{Input} & 0 & & \mbox{Exception Status} \\ \hline 1 & \mbox{Input} & 0 & & \mbox{Exception Status} \\ \hline 2 - 3 & & \mbox{Active Instance} \\ \hline 2 - 3 & & \mbox{Active Instance} \\ \hline 12 & \mbox{Input} & 0 - 1 & & \mbox{Active Pressure Value} \\ \hline 12 & \mbox{Input} & 0 - 1 & & \mbox{Active Instance} \\ \hline 13 & \mbox{Input} & 0 & & \mbox{Exception Status} \\ \hline 14 & \mbox{Input} & 0 & & \mbox{Exception Status} \\ \hline 14 & \mbox{Input} & 0 & & \mbox{Exception Status} \\ \hline 14 & \mbox{Input} & 0 & & \mbox{Input} & \mbox{Input} & 0 & & \mbox{Exception Status} \\ \hline 14 & \mbox{Input} & 0 & & \mbox{Input} &$			1	0		0	0	0		0	0	Status	Trip Status Inst. 1
9Input $0 - 1$ $2 - 3$ Active Instance INT Active Pressure Value10Input0Exception Status Active Instance10Input0Exception Status11Input0Exception Status11Input0002 - 3Active Instance2 - 3Active Instance4 - 5INT Active Pressure Value12Input0 - 1 $2 - 5$ 13Input014Input014Input014Input0150016017018019010011011011011011011011012Input14Input1501601701701701801901001001101101210131014101510161017101710181019101910191019101910191019 </td <td></td> <td></td> <td>2 - 5</td> <td></td> <td colspan="7"></td> <td></td>			2 - 5										
2 - 3INT Active Pressure Value10Input0Exception Status $1 - 2$ Active Instance $3 - 4$ INT Active Pressure Value11Input0 $1 - 2$ Exception Status11Input0 $2 - 3$ INT Active Pressure Value $2 - 3$ Active Instance $4 - 5$ INT Active Pressure Value12Input0 - 1 $2 - 5$ REAL Active Pressure Value13Input0 $1 - 2$ Active Instance $3 - 6$ REAL Active Pressure Value14Input01000000001	8	Input	0		Exception Status								
10Input0 1 - 2 3 - 4Exception Status Active Instance11Input0INT Active Pressure Value11Input0Exception Status11100002 - 3 4 - 5Active Instance12Input0 - 1 2 - 5Active Pressure Value13Input0Exception Status14Input0Exception Status14Input0Input14Input0Input14Input0Input1500016InputInput171Input181 - 2 3 - 6Input190Input100011001100110011001100110011001100110011001211131114111511161117111810119101191011910119101191011910119101 <t< td=""><td>9</td><td>Input</td><td>0 - 1</td><td></td><td colspan="7">Active Instance</td></t<>	9	Input	0 - 1		Active Instance								
1 - 2 3 - 4Active Instance11Input0 INT Active Pressure Value11Input0 $ITrip$ StatusTrip Status1000002 - 3 4 - 5 INT Active Instance12Input0 - 1 2 - 513Input0 $ITrip$ Status13Input0 $ITrip$ Status14Input014Input0100000014Input15016 $ITrip$ Status17018019 $ITrip$ Status10011011011011011011011011011011011011011011012113114115115116117117118119119110110110110110110110110110110 <t< td=""><td></td><td></td><td>2 - 3</td><td></td><td></td><td></td><td>IN</td><td>IT Activ</td><td>/e Pr</td><td>essure Val</td><td>ue</td><td></td><td></td></t<>			2 - 3				IN	IT Activ	/e Pr	essure Val	ue		
$\begin{tabular}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	10	Input	0						-				
11 Input 0 Imput 0 Imput 0 0 0 0 0 0 Trip Trip Trip Trip Status Inst. 2 Inst. 3 Inst. 2 Inst. 2 Inst. 3 Inst. 3 Inst. 2 Inst. 3 Inst. 3 Inst. 2 Inst. 3													
1 0 0 0 0 0 0 0 Trip Status Inst. 2 12 Input 0 - 1 Active Instance Active Instance Active Instance 12 Input 0 - 1 Active Instance Active Instance Active Instance 13 Input 0 Exception Status Active Instance Active Instance 14 Input 0 Exception Status Trip Trip Trip 14 Input 0 0 0 0 0 0 Inst. 2													
1000000Status Inst. 2Status Status Status 	11	Input	0					Exc	eptio	n Status			
4 - 5 INT Active Pressure Value 12 Input 0 - 1 Active Instance 2 - 5 REAL Active Pressure Value 13 Input 0 1 - 2 Active Instance 3 - 6 REAL Active Pressure Value 14 Input 0 1 0 0 0 0 1 0 0 0 0 Trip Status Status Inst.			1	0		0	0	0		0	0	Status	Trip Status Inst. 1
12 Input 0 - 1 Active Instance 2 - 5 REAL Active Pressure Value 13 Input 0 1 - 2 Active Instance 3 - 6 REAL Active Pressure Value 14 Input 0 1 0 0 0 0 1 0 0 0 0 0			2 - 3					Ac	tive l	nstance			
2 - 5 REAL Active Pressure Value 13 Input 0 Exception Status 1 - 2 Active Instance Active Instance 3 - 6 REAL Active Pressure Value 14 Input 0 1 0 0 0 0 Trip 11 0 0 0 0 0 Status			4 - 5				IN	IT Activ	/e Pr	essure Val	ue		
13 Input 0 Exception Status 1 - 2 Active Instance 3 - 6 REAL Active Pressure Value 14 Input 0 1 0 0 0 0 0 1 0 0 0 0 0 Status	12	Input	0 - 1					Ac	tive l	nstance			
1 - 2 Active Instance 3 - 6 REAL Active Pressure Value 14 Input 0 Exception Status 1 0 0 0 0 0 1 0 0 0 0 0			2 - 5				RE	AL Act	ive F	Pressure Va	alue		
3-6 REAL Active Pressure Value 14 Input 0 14 1 1 0 0 0 0 0 0 0 1 0 1 0	13	Input	0					Exc	eptio	n Status			
14Input0Exception Status100000100000100000													
100000TripTrip10000000StatusStatus10000001Inst. 2Inst. 2							RE				alue		
1 0 0 0 0 0 0 Status Statu Inst. 2 Inst.	14	Input	0			i		Exc	eptio	n Status			
			1	0		0	0	0		0	0	Status	Trip Status Inst. 1
			2 - 3					Act	tive l	nstance			
4 - 7 REAL Active Pressure Value			4 - 7				RE	AL Act	ive F	Pressure Va	alue		

The I/O Assembly DATA attribute has the format shown below:

Appendix

A: Conversion of a Floating Number According to **IEEE 754**

Gen

Number received	AA BB CC DD _t	1 (4-Byte, floating fo	rmat)		ecimal number
					= 16) al number (Radix = 10) number (Radix = 2)
 Reverse the sequence of the HEX words 	DDh	CCh		BB _h	AA _h
2. Separate into bytes	SEEE EEE	E _b EMMM M	MMMb	MMMM MMMM _b	MMMM MMMM
	Sign 8-t	Bit exponent		23-Bit mantissa	
	S	EEEE EEEE _b	MMM	MMMM MMMM MM	
. Calculate	Û	Û		①	
			1+(<u>M</u>	MM MMMM MMMM MM	имм мммм мммм _b
				$= 1 + \left(\frac{NNN}{8388}\right)$	$\frac{NN_d}{608_d}$
				$\hat{\Gamma}$	
	Sign =	Exponent =		Mantissa	=
	-1 ^S	XYZ _d		RSTU	/d

Converted number

Sign × 2^(Exponent-127) × Mantissa

Example

Number received

1. Convert sequence of the 42_h CA_h 00_h 00_{h} HEX words 2. Separate into bytes 0100 0010_b 0000 0000_b 0000 0000_b 1100 1010_b Sign 8-Bit exponent 23-Bit mantissa 1000 0101_b 100 1010 0000 0000 0000 0000_b 0 Û Û Û -1⁰ $\frac{100\,1010\,0000\,0000\,0000_{\rm b}}{2^{23}}$ 1+ $\left(\frac{4849664_{d}}{8388608_{d}}\right)$ = 1+ Û Û Sign = Exponent = Mantissa = 1 133 1.578125

(4-Byte, floating format)

00 00 CA 42_h

3. Calculate

Converted number

1 × 2⁽¹³³⁻¹²⁷⁾ × 1.578125 = 101

Typical Start-Up B: Procedure

Allocation process •

- Setting of the EPR attribute •
- Choice of the input and output assemblies •

The start up of a device is divided into the steps:

Allocation process

Send an allocation string as defined in the DeviceNet specification to the device you want to allocate.

Set the bits in the allocation choice byte to 1 for these connections you want to use.

Example	Master MAC ID: Allocation choice: Slave address:	0 Explicit, poll, bit strobe, COS 2			
	$\Rightarrow Allocation string: 416 00 4B 03 (Slave's explicit/unconnected response message: 413 00 CB 00$				
	Within the establish	e first allocation message the expli ed.	cit conr	nection has to be	

Setting of the EPR attribute (expected packet rate)

After the allocation, the device activates an INACTIVITY WATCHDOG TIMER. This timer has to be set for every single connection (connection object, attribute 9) which is allocated in the allocation choice byte. This attribute defaults to 2500 (2500 milliseconds) within explicit messaging connections, and to zero within an I/O connection. If the INACTIVITY WATCHDOG TIMER expires, the established connection will be released. With every message the device receives, this timer is reloaded with the value specified in the according connection object and so it doesn't expire. The value zero deactivates the INACTIVITY WATCHDOG TIMER.

So in this step the inactivity watchdog timer has to be set. In testing mode you could use the value 0 to deactivate the inactivity watchdog timer.

In the following you see the strings for setting the EPR attribute (addresses as specified above):

ID	Message body	
414	00 10 05 01 09 00 00	set EPR of the explicit connection to zero
414	00 10 05 02 09 00 00	set EPR of the poll connection to zero
414	00 10 05 03 09 00 00	set EPR of the bit strobe connection to zero
414	00 10 05 04 09 00 00	set EPR of the COS/cyclic connection to zero

The responses of the slave are:

ID	Message body	
413	00 90 00 00	set EPR of the explicit connection to zero

Choice of the input and output assemblies

Reading the configured

assemblies

You can specify which of the several in a device predefined input/output assemblies should be used for every single connection.

Reading or setting of the input/output assemblies is possible only if the corresponding connection (polling, change of state, bit strobe) has been allocated in the allocation message.

If you want to read the number of the chosen assembly, you must read the attributes 14 and 16 in the corresponding Instance of the connection object (object ID 5).

For reading this value, the connection has to be established. The EPR attribute may be set.

Instance 2: Polling

Instance 3: Bit strobe

Instance 4: Change of state/cyclic

Setting of assemblies

If you want to set the number of the chosen assembly, you must set the attributes 14 and 16 in the corresponding instance of the connection object.

For setting this value, the connection has to be allocated, but the EPR attribute has not to be set to any value.

Examples

Read a configured assembly (addresses as specified above)

Get single request:

ID	Message body	
414	00 0E 05 02 0E	Get produced connection path (request for input assembly by master).

Get single response:

ID	Message body	
413	00 8E 20 04 24 05 30 03	Response from slave

The addressing format of the attribute values differ from the normal mode. A connection path attribute that specifies class 4, instance 5, and attribute ID 3 is illustrated below:

	Class #4		Instance #5		Attribute #3
20	04	24	05	30	03

The instance defines the assembly you want to use. This format has to be used by the master in the request and is used by the slave in the response.

Set the input assembly 04 for a poll connection (addresses as specified above)

Set single request:

ID	Message body	
414	80 00 10 05 02 10 20 04	First fragment
414	80 81 24 04 30 03	Second fragment

Because the message body is greater than 8 bytes, the fragmented protocol has to be used.

Set single response:

ID	Message body	
413	80 C0 00	Response on first fragment
413	80 C1 00	Response on second fragment

C: Literature

- www.inficon.com
 Operating Manual
 CDG045D
 tina51e1
 INFICON AG, LI–9496 Balzers, Liechtenstein
- www.inficon.com
 Operating Manual
 CDG100D
 tina52e1
 INFICON AG, LI–9496 Balzers, Liechtenstein
- www.inficon.com
 Operating Manual
 CDG160D, CDG200D
 tina53e1
 INFICON AG, LI–9496 Balzers, Liechtenstein
- [4] www.odva.org Open DeviceNet Vendor Association, Inc. DeviceNet[™] Specifications
- [5] Common Industrial Protocol (CIP™) Ed. 3.5 and DeviceNet[™] Adaption of CIP Ed. 1.6 (Open DeviceNet Vendor Association)
- [6] www.inficon.com Product descriptions and downloads INFICON AG, LI–9496 Balzers, Liechtenstein

Liechtenstein Tel +423/388 3111 Fax +423/388 3700 reachus@inficon.com

www.inficon.com