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FabTime Wafer Fab Cycle Time Tutorial 
and Queueing Formula Examples 
Author’s Note: This cycle time tutorial and supplemental set of queueing formulas was written for 
the FabTime website back in the early 2000s by Frank Chance and Jennifer Robinson. We believe 
that the text remains valid, though we do apologize for the low resolution of the images. Consider 
them a snapshot into 2000-era graphics that will make you appreciate today’s much higher image 
quality.  

Introduction 
Cycle time in a factory is directly related to the amount of product in the factory (WIP), the 
number of hours of production time available on each machine (capacity), and the amount of 
variability in the factory. These relationships can be proven mathematically, and generally agree 
with the intuition of factory managers. Understanding how the relationships work is the first step 
to reducing cycle times. 

Definitions 
Bottleneck 
The machine group in a factory that has the highest loading for a given product mix. Some authors 
define bottleneck as having a loading of 100%. However, in common use, bottleneck usually refers 
to the most highly loaded machine group. 

Capacity 
The maximum throughput of a factory or workstation. For a factory, the capacity is the throughput 
rate that drives the idle time on the bottleneck to zero. 

Cycle Time 
The total time required to produce a product, from entering the factory to leaving the factory. 
Cycle time includes time spent processing, as well as transport time and time spent waiting in 
queue. Cycle times by operation are also sometimes reported and include the time from arrival at 
the operation until completion of processing. 

Cycle-Time-Constrained Capacity 
The throughput rate for a factory at which the average cycle time is equal to some target amount, 
usually expressed as a multiple of the total weighted average raw process time of the factory. For 
example, the 3X cycle-time-constrained capacity is the throughput rate at which the weighted 
average cycle time for the factory is no more than three times the weighted average raw 
processing time. 
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Little’s Law 
A fundamental relationship derived by J. D. C. Little concerning cycle time, work-in-process and 
throughput. Little’s Law states that at a given WIP level, the ratio of WIP to cycle time equals 
throughput. An illustration is available as part of this tutorial. 

Throughput 
The average output rate of a factory or workstation. The throughput of a factory is equal to the 
factory start rate multiplied by average line yield. 

Work-in-Process (WIP) 
The average number of units of product in the factory (or at a workstation). WIP includes units 
being processed on equipment, as well as units in transit, or awaiting processing at an equipment 
group. 

The Relationship Between Cycle Time and WIP 
The relationship between cycle time and WIP was first documented in 1961 by J. D. C. Little. Little’s 
Law states that at a given WIP level, the ratio of WIP to cycle time equals throughput, as shown in 
the formulas below: 

 
 

 
In other words, for a factory with constant throughput, WIP and cycle time are proportional. If 
throughput is held constant, it is impossible to reduce average WIP without reducing average cycle 
time, and vice versa. It is important to understand that this is a known mathematical relationship. 
Over the long term, it will hold true for an entire factory or for a single workstation (as long as the 
units used for each term are consistent with one another). 

Little’s Law can be illustrated with a simple example: assume a factory with a capacity of 500 
wafers per week and no variability. Although this is a highly unrealistic assumption, we will relax it 
later in the tutorial. Under these assumptions, if we start 500 wafers or less in each week, the cycle 
time for each will be one week (because we have enough capacity to process them all during the 
week). 

However, suppose that we start out with a backlog of 500 wafers in the fab. Each week we get 500 
more in, so that the total WIP is 1000. We can only process 500 of the wafers in a given week. On 
average, each wafer will spend two weeks in the factory (one week waiting for the backlog of 
other wafers to be processed, the next week being processed). Similarly, if we have 1500 wafers in 
the factory at a time, the average cycle time will be three weeks, etc. This is shown in the graph 
below. 
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As another way of looking at this, the following graph shows average throughput vs. average WIP. 
Up to the capacity of the factory, the throughput (the amount we get out per week) will equal the 
amount that we start per week. However, when the WIP in the factory reaches the capacity of 500 
wafers per week, throughput can no longer increase. No matter how much WIP we cram into this 
factory, we will never get more than 500 wafers per week out (without increasing the fab capacity 
in some way). And, as shown in the first chart, the more WIP we cram in, the longer the average 
cycle time will be. 

 
In this example, the best thing to do is clear - start exactly 500 wafers each week. This will 
maximize throughput, while cycle time remains at the minimum of one week. However, the 
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situation is only this black and white for systems with no variability. For fabs that operate in the 
real world, we must consider the relationship between cycle time and capacity. 

The Relationship Between Cycle Time and Capacity 
In the (imaginary) no-variability case, cycle time remains constant as start rate is increased, up to 
the maximum system capacity. At that point, if start rate is increased further, cycle time increases 
linearly. This is shown in the following chart. 

 
In a real fab, with variability, cycle time tends to increase with start rate (or throughput rate - the 
two measures are directly related by line yield). Exactly how much the cycle time increases will 
depend on the amount of variability in the system. In most fabs, once the system is loaded above 
approximately 85%, cycle time starts to increase rapidly. This is sometimes called the “hockey stick 
effect,” as illustrated below. 
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Cycle time limits the effective capacity of a wafer fab. Even the low variability system cannot be 
run at 100% of the maximum throughput, because cycle time increases rapidly to unacceptable 
levels. In fact, the limiting case for systems with any variability is that as the factory loading 
approaches 100%, the cycle time approaches infinity. In the real world, factory planners account 
for this by including “catch-up capacity” in their plans. That is, they typically plan for about 15% 
idle time on all their tool groups. This keeps factories out of the steep portion of the curve shown 
above. 

We have worked on projects in which the factory performance measure used was cycle-time-
constrained capacity. This is defined as the maximum capacity at which the factory can achieve a 
given average cycle time, expressed as a multiple of raw process time. The multiple of raw process 
time is usually called an X-factor. So, the shorthand term for three times raw process time is 3X. In 
the chart above, the 3X cycle-time-constrained capacity (or 3X capacity) for the low variability 
system is approximately 80% of the maximum theoretical capacity of the system. For the highest 
variability factory, the 3X capacity is only about 45% of the maximum theoretical capacity. 

The maximum theoretical capacity of a factory is the start rate that drives the bottleneck to 100% 
loading. The only way to increase it is to add equipment or make process changes that reduce the 
load on the bottleneck. However, as the example chart shows, cycle-time-constrained capacity can 
sometimes be dramatically improved by reducing variability in the factory. This is one of the key 
strategies used for low-cost cycle time reduction efforts. 

The Relationship Between Cycle Time and Variability 
Cycle time increases with variability. For example, suppose that you have a single machine that can 
process four lots per hour (one at a time). If each lot takes exactly 15 minutes to process, and lots 
arrive exactly every 15 minutes, then the lots will experience no queue delay. The cycle time 
through this step for each lot will be 15 minutes of pure process time, and the machine will 
operate with 100% utilization. However, in a real fab, neither the interarrival times nor the 
processing times will be exactly the same from lot to lot. 
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Variability in Processing Times 
All sorts of things contribute to variability in processing time in a fab. Different recipes are 
processed on the same machine and have different process times. Setups increase process time 
(from the lot’s perspective), as do equipment failures. When rework lots come through, they 
typically have fewer wafers than regular lots, and so have lower processing times. Similarly, yield 
loss reduces the number of wafers per lot and can reduce process time per lot. Operators don’t 
always remove lots from the machine immediately upon completion, increasing the effective 
process time. 

Suppose that in the example above the processing time averages 15 minutes but can range from 
10 minutes to 20 minutes for each individual lot. Also suppose that the first lot takes 20 minutes. 
When the second lot arrives 15 minutes after the first, it will have to wait for five minutes. This 
means that the average queue time of the first two lots has increased from zero to 2.5 minutes. 
And things will just keep getting worse over time. Once you have any lots that wait, you can never 
again have zero wait time, because the best case for a lot is that its waiting time is zero. You never 
have any negatives to cancel out the positive delay. 

Now suppose that the first lot only took 10 minutes to process. This means that the machine will 
be idle for five minutes, until the second lot arrives. This is a problem, because this machine is 
supposed to be operating at 100% utilization. Those five minutes of idle time can never be 
recovered. For a good illustration of this, we recommend that you read The Goal by Eli Goldratt 
and Jeff Cox. 

Variability in Arrival Times 
Even more of a problem in wafer fabs than variability in process times is variability in time 
between arrivals. The primary culprit here is batch processing. Suppose that in our example, the 
step before the example machine takes place on a batch tool with a batch size of four lots, and a 
processing time of one hour per batch. Instead of arriving at our machine once every 15 minutes, 
lots arrive instead in a batch of four every hour. Since the example machine can only process one 
lot at a time, the other three lots will have to wait while the first lot is processed. Then lots three 
and four will wait while the second is processed, and so on. The average queue delay for this batch 
(assuming that the machine is idle when it arrives) is [0 + 15 + 2*(15) + 3(15)]/4 = 22.5 minutes. 

Other factors also contribute to variability in lot arrival times, including rework, transfer batching, 
and operator delays. The net result is that when a system has variability, the cycle time increases. 
How much the cycle time increases depends in part on the utilization of the system. In the 
example below, we have a single machine, loaded to 60%, 75%, and 90% utilization. The process 
time is constant, but the interarrival times vary. As the chart shows, the more variability there is in 
the arrival process (as shown on the X-axis), the higher the cycle times will be (as shown on the Y-
axis). The higher the overall utilization of the system, the worse the effect is. 
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The above chart was generated using a simple queueing formula for the queue delay for a single 
machine. Simulation can also be used to do what-if analysis of the impact of variability on cycle 
time. The bottom line is that any system with variability will experience some queueing; the higher 
the utilization of the system, the worse the effect. See the discussion on cycle time and capacity 
above for more details. 

The Relationship Between Cycle Time and Batching in a 
Wafer Fab 
Background 
Batch tools are tools in which more than one lot may be processed at one time. They are generally 
used for very long operations, such as furnace bake operations. For example, a typical batch 
furnace might be able to process up to eight lots at one time and have a process time of up to 
twelve hours. Processing time is usually independent of the number of lots in a batch, and once a 
batch process begins, it cannot be interrupted to allow other lots to join. 

From a local perspective, when a furnace is available and full loads are waiting, the decision to 
process a batch is obvious, since no advantage can be gained at that work area by waiting 
(although a decision may still be needed concerning which product type to process). However, 
when there is a furnace available and only partial loads of products are waiting, a decision must be 
made to either start a (partial) batch or wait for more products to arrive. 

There are two problems with running a partial batch. One is that the unused capacity of the 
furnace will be “wasted.” The other problem is that lots that arrive immediately after the batch 
starts cannot be added to the batch and might have to wait many hours until another furnace is 
available. There are also problems that stem from waiting to form a full batch. The lots that are 
waiting to be processed incur extra queue time while waiting for other lots to arrive. The furnace is 
held idle, driving down its efficiency. And full batches contribute more to variability after the 
furnace operation. 
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Batch Size Decision Policies 
There are two basic types of batch size decision policies. The first type are known as Minimum 
Batch Size (MBS) decision rules, or threshold policies. An MBS rule simply states that, whenever 
there are N lots in queue, ready to form a batch, and a furnace is available, immediately start 
processing those N lots. Here N could be any value from one up to the maximum load size for the 
furnace. An MBS rule with a load size of one is sometimes referred to as a greedy policy, while one 
with the maximum load size is called a “force-full” policy (since the furnace is only run when it is as 
full as possible). The other category of batch size decision rules are known as “look-ahead” rules. 
With a look-ahead rule, the furnace operator looks ahead in some way to see which lots are 
expected to arrive soon, and sometimes waits to form the batch until additional lots arrive. 
Different methodologies are used to decide when to wait, but the general idea is to minimize the 
sum of the expected waiting time for lots already in queue and lots expected to arrive within some 
time window. Look-ahead policies are naturally dependent on the accuracy of the information 
concerning future arrivals and require the presence of some sort of predictive control system. For 
the remainder of this article, we will focus on threshold policies, rather than look-ahead policies. 

Single-Tool Results 
Suppose we have a single furnace, that can process up to eight lots at one time and has an eight-
hour process time (constant) and exponential interarrival times. We ran a series of discrete-event 
simulation replications in which we varied the interarrival time, to vary the utilization of the 
furnace from 20% to 95%. We ran two sets of experiments, one with a greedy batching rule, and 
the other with a full-batch rule (always wait to form full batches). The results are displayed in the 
graph below: 

 
Here we see that until the furnace is loaded to about 90%, a greedy (minimum batch size of one) 
policy results in lower cycle times than a full-batch policy. At high utilizations there is a very slight 
improvement from using a full-batch policy over a greedy policy. 
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Full Factory Model Results 
You might wonder if this has any effect on the factory as a whole. After all, an extra few hours here 
or there on the furnaces could be lost in the noise relative to the overall cycle time. We therefore 
did another experiment using a simplified version of a full factory model. The model had two 
products, 115 steps per process flow, 22 tool groups, and 21 operator groups. We simulated this 
model for two years, varying the start rate to allow different levels of bottleneck utilization for 
each run, and obtained the following results: 

 
In the full factory model, the average cycle time is almost 70% greater for the full-batch policy than 
for the greedy policy at very low utilizations. Up to 80% loading, the greedy batch policy yields 
lower cycle times. For very highly loaded fabs the full-batch policy yields essentially the same 
results as the greedy policy. 

For a more extreme example of the impact of batching on this fab, we modified the factory to have 
a greater number of products. We held the total volume the same but divided it among seven 
products instead of two. All products used the same process flow, but for certain batch tools in the 
model, lots of different product types could not be batched together. This change thus increased 
the volume of distinct batch IDs in the model. The change led to a slight degradation in 
performance under the greedy policy, and to a significant cycle time increase under a full-batch 
policy, as shown below: 
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Clearly, batching policy makes a big difference in this high-product mix fab because there are so 
many distinct batch IDs. Lots almost always wait a long time to form a batch under a full-batch 
policy, especially for very low utilizations. The increase in cycle time between this case and the 
previous case also illustrates how sensitive fab models can be to batching rules (in this case, 
decisions about which types of lots can be batched together). 

In conclusion, for batch tools that are not highly loaded, setting a high threshold for a minimum 
batch size decision rule (forcing full or near-full batches) can significantly increase local cycle times, 
as well as overall fab cycle times. 

The PK Formula 
The Pollaczek-Khintchine (called P-K, for obvious reasons) formula gives the expected average WIP 
at a single-tool workstation where arrivals to the workstation are highly variable, and process 
times are somewhat less variable. More specifically, the formula applies when interarrival times to 
the workstation are exponentially distributed, and process times follow a general distribution 
(M/G/1 queues). For tools that fit this description, the expected WIP can be computed from the 
mean interarrival time, the mean process time, and the variance of the process time distribution. 

It turns out that in a wafer fab, interarrival times to a given workstation usually are highly variable, 
and some research does suggest modeling them as exponential. We usually think of process times 
as being fairly constant. However, if you look at process time as the time from when a lot gets to 
the front of the queue to when it finishes processing, then things like setups, equipment 
downtimes, operator delays, and different operations processed on the same tool all add 
variability to the process times as seen by successive lots. And this variability, as shown by the P-K 
formula below, can drive up WIP and cycle time. 

• WIP = average number in queue and in process (units) 

• λ = arrival rate (units per hour) 

• μ = service rate (units per hour) 
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• ρ = l /m (traffic intensity or utilization) 

• σ2 = variance of service time distribution (0 for constant service times) 

• WIP = {ρ} + {[ρ2]/[2*(1 - ρ)]} + {[λ2*σ2]/[2*(1 - ρ)]}. 

If you look at the above formula for WIP, you see that it is first of all a function of traffic intensity. 
We know this. As a tool is loaded more heavily, the number of wafers in queue increases. As ρ 
approaches one, the denominator of the last two terms approaches zero, and the WIP approaches 
infinity. This is why capacity planners always plan for a capacity buffer on each tool group - to keep 
the WIP from becoming very large. You’ll also notice in the P-K formula as stated above, that the 
last two terms in curly brackets have the same denominator and could be combined. We 
separated them to highlight the influence of process time variability. If you have constant process 
times, the whole last term drops off. If you have highly variable process times, that term can 
become significant. A graph illustrating this is shown below: 

 
 
The graph shows that it is mostly equipment loading that drives cycle time at individual tools. If we 
just care about reducing cycle time, we can decrease start rates or increase capacity and cycle 
times will go down. However, either of these approaches costs money. The nice thing about 
variability reduction is that it also reduces cycle time, without requiring costly equipment 
purchases or decreased start rates. 

What the P-K formula tells us is that, if we look at individual tools in the fab, anything that we can 
do to reduce variability in the process times seen by successive lots will directly act to reduce WIP 
at these tools, without requiring any reduction in tool loading. And, as predicted by Little’s Law, 
cycle time will go down at the same time. The P-K formula is the mathematical justification for 
variability reduction efforts in a wafer fab. 

For a derivation of the P-K formula, see Fundamentals of Queueing Theory: Second Edition, by 
Donald Gross and Carl Harris (Wiley), page 254-256. Other queueing formulas are shown below. 



FabTime Wafer Fab Cycle Time Tutorial and Queueing Formula Examples 12 
Originally written in 2000 by Frank Chance and Jennifer Robinson.  
This version © 2024 by INFICON Inc. All rights reserved. 

Queueing Formulas for Cycle Time Estimation 
For manufacturing systems, queueing formulas can be used to estimate system performance 
measures such as average cycle time and throughput. For a full-scale wafer fab, these formulas 
usually become prohibitively complex. Accurate closed form solutions are not readily available — 
at least not solutions that contain sufficient detail to match actual cycle times in the fab. As a 
result, most practitioners turn to simulation for estimating cycle times. 

Queueing models can be very useful, however, for validating the behavior of individual 
workstations and work cells. For our customers’ convenience, we have collected a series of 
relevant queueing formulas. Most of these formulas have also been published in Chance (1999). 
For more information, we recommend any good queueing textbook. Examples include Gross and 
Harris’ Fundamentals of Queueing Theory or Asmussen’s Applied Probability and Queues, both 
published by John Wiley & Sons. 

Notation 
Queueing formulas are usually categorized according to Kendall’s A/B/s notation, where A is the 
distribution of inter-release times, B is the distribution of service times, and s is the number of 
servers. Common distributions are M (Markov, or exponential), G (general), and D (deterministic, 
or constant). 

M/M/1 Queues in Series 
Consider a sequence of three workstations, with each lot having to visit the workstations exactly 
once, in sequence. If the interarrival time to the first machine is exponentially distributed, and 
process times at all machines are exponentially distributed, then according to Section III.4 of 
Asmussen (1987), the limiting input process to each queue is Poisson (interarrival times are 
exponentially distributed), and we may calculate limiting expected time in queue separately for 
each queue. Suppose the arrival rate to the system is λ = 1.0 wafers per hour, and the service rates 
at the three workstations are μ1 = 2.5, μ2 = 2.0, and μ3 = 2.5 wafers per hour. For simplicity, 
suppose each workstation has exactly one machine. Thus, the total limiting expected time to pass 
through the three workstations should be 

• (μ1 - λ)-1 + (μ2 - λ)-1 + (μ3 - λ)-1 = 0.67 +1.0 + 0.67 = 2.33 hours 

M/M/1 Queue with Loading and Unloading 
Consider a single machine and single lot class, but where process time consists of three parts: 
loading the lot, servicing the lot, and unloading the lot. The dispatch rule is FIFO. We can use the 
formula given before for the M/G/1 queue to calculate the limiting expected system cycle time, 
where the process time has three parts, 

• λ E[S0
2] (2 (1-ρ) )-1 + μ-1, 

Suppose λ = 0.05, and the three parts of the process time are distributed exponentially with means 
1/μ1 = 1.0, 1/μ2 = 4.0, and 1/μ3 = 2.0. Then 

• μ-1 = μ1 + μ2+ μ3 + = 7.0. 

Now the second moment of the process time, 

• E[S0
2] = Var[S0] + E[S0]2 = μ1

-2 + μ2
-2 + μ3

-2 + μ-2 = 70.0, 

https://fabtime.com/MG1Queue.php
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since the process time is the sum of three independent exponential random variables. The traffic 
intensity ρ = 0.35. Hence the limiting expected system cycle time should be 

• (0.05 * 70.0)(2*(1-0.35))-1 + 7.0 » 9.7. 

M/M/1 Queue with Two Priority Classes 
Consider a single workstation with two classes of lots, one receiving high priority, the other 
receiving low priority. Suppose that the workstation contains only a single machine. The dispatch 
rule is non-preemptive head-of-the-line, in that high priority lots that arrive during the service of a 
low priority lot do not interrupt service. Rather, the high priority lot moves ahead of any low 
priority lots waiting for service. Within a priority class, service is FIFO. Let λH, λL denote the arrival 
rates for the two classes. Let μH, μL denote the service rates for the two classes. Denote the traffic 
intensities by ρH = λH/μH, ρL = λL/μL and assume ρH + ρL < 1. We obtain the limiting expected queuing 
delay from Table 4.4 of Prabhu (1981), and after adding the expected service time, we find the 
expected time in system for high priority lots to be 

• ν (1 - ρH)-1 + μH
-1, 

and for the low priority lots to be 

• ν ((1 - ρH)(1 - ρH - ρL))-1 + μL
-1, 

where 

• ν = λL μL
-2 + λH μH

-2. 

Suppose λH = 1 lot/hour, λL= 9 lots/hour, μH = 12.0 lots/hour = μL 

Then ν = 0.06944, and the expected time in system for high priority lots is 

• [ .06944 / (1 - .0833)] + [1/12] = .0758 + .08333 = .15909 hours = 9.545 min. 

For low priority lots, the expected time in system is 

• [ .06944 / (1 - .0833)(1 - .0833 - .75)] + [1/12] = .4545 + .0833 = .5379 hours = 32.27 min. 

As we increase the percentage of high priority lots, the expected time in system (or cycle time) of 
the low priority lots increases rapidly, and non-linearly, although the weighted average cycle time 
remains the same (30 minutes in this example). This is shown in the figure below. 
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M/M/1 Queues in Series with Rework 
We test whole-lot rework here only, so that we may compare with analytic results for M/M/1 
queues in series. Suppose we have two workstations in series, with some possibility of rework at 
step one. By rework, we mean that there is a certain probability that for every lot leaving step one, 
it may have to visit a third machine for processing, then pass through step one again. Suppose all 
three workstations have processing rate μ = 2.0 lots per hour. Let the arrival rate into the system 
be λ = 1.0 lot per hour. However, that is not the effective arrival rate that workstation one sees, 
due to the possibility of rework. Also suppose that each workstation contains a single machine. 

Let the probability of rework be p = 0.20, that is, approximately one out of every five lots will be 
reworked. Lots that are reworked visit a rework workstation, then return to workstation one. Lots 
that are not reworked visit workstation three, then exit the system. To calculate the analytic 
limiting expected system cycle time, we need first to calculate the effective arrival rate to all three 
workstations, given that rework can occur. First, the arrival rate to workstation one is incoming 
lots at a rate of λ, plus reworked lots at a rate of (pλ), plus those lots that are reworked twice at a 
rate of (p-2λ), etc. Thus, 

• λ2 = Ε pn = (1 - p)-1 = 1.25 lots per hour. 

The arrival rate to the rework workstation is the probability of rework times the effective arrival 
rate into workstation one, 

• λr = pλ1 = 0.25 lots per hour. 

The arrival rate to workstation two is the exit rate of workstation one (that must be its arrival rate 
λ1) minus the rate of lots being reworked (λr), 

• λ2 = λ1 - λr = 1.0 lot per hour. 

Finally, the expected system cycle time is the expected number of visits to each workstation times 
the expected time at each workstation, added together, 

• λ1 (λ (μ - λ1))-1 + λr (λ (μ - λr))-1 + λ2 (λ (μ - λ2))-1 = 2.81 hours. 
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M/M/1 Queues in Series with Scrap 
We demonstrate whole-lot scrapping here only, so that we may compare with analytic results for 
M/M/1 queues in series. Suppose we have three workstations in series, with some scrap occurring 
after steps one and two. If the interarrival times to the first workstation are exponentially 
distributed, and all process times are exponentially distributed, then we can analyze the limiting 
expected time in queue separately for each queue, as before. The only modification is that the 
arrival rate to each queue changes, as some lots are removed due to scrapping. 

Let the arrival rate to workstation one be λ1 = 1.0 lots per hour. If approximately one out of every 
ten lots is scrapped during processing at workstation one, then the arrival rate to workstation two 
is λ2 = λ1 * 0.9 = 0.9 lots per hour. If approximately one out of every five lots is scrapped during 
processing at workstation two, then the arrival rate to workstation three is λ3 = λ2 * 0.8 = 0.72 lots 
per hour. Suppose that the three processing rates are μ1 = 2.5, μ2 = 2.0, and μ3 = 2.5 lots per hour, 
and that each workstation consists of a single machine. Then, the total limiting expected system 
cycle time should be 

• (μ1 - λ1)-1 + (μ2 - λ2)-1 + (μ3 - λ3)-1 = 0.67 + 0.91 + 0.56 = 2.14 hours. 

M/M/s Queue 
The M/M/s queue has exponentially distributed interarrival and process times, and s servers. In a 
wafer fab, this might correspond to a workstation with highly variable arrivals and highly variable 
process times, with multiple identical tools in the workstation. We should note that processing 
times in a wafer fab are not usually variable enough to follow an exponential distribution. 
However, the M/M/s formulas are a good place to start, and can apply in some cases. 

Let λ be the arrival rate, μ the service rate, and ρ = λ/(s μ) the traffic intensity (server loading). For 
either first-in-first-out (FIFO), or last-in-first-out (LIFO) dispatch rules, the mean of the long-term 
workstation cycle time distribution is given by 

• υs (s μ (1 - ρ)2)-1 + μ-1, 

where 

• us = (λ/μ)s (s!)-1 [ ( Σ (λ/μ)i (i!)-1) + (λ/μ)s (s!(1 - ρ))-1]-1, 

where the summation runs from 0 to (s -1). When the dispatch rule is FIFO, the variance of the 
limiting cycle time distribution is given by 

• υs((s μ)2 (1 - ρ)4)-1 (2 - 2ρ - us) + μ-2. 

When the rule is LIFO, the variance is given by 

• υs((s μ)2 (1 - ρ)4)-1 (2 - υs) + μ-2. 

In each of these variance calculations, υs is as given above. 

M/G/1 Queue 
The M/G/1 queue has exponentially distributed interarrival times, general process times, and a 
single server. The inclusion of general process times makes this formula more relevant for wafer 
fabs, where processing times are typically not as variable as the exponential distribution used with 
M/M/1 queues. The dispatch rule is FIFO for the equations that follow. Let λ be the arrival rate, μ 
the service rate, and ρ = λ/μ be the traffic intensity (server loading). From Equation 6.25 of Prabhu, 
the mean of the long-term cycle time distribution is given by 
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• λ E[S0
2] (2 (1-ρ) )-1 + μ-1, 

or, if we substitute in the variance plus the squared mean for the second moment of the service 
time distribution, 

• λ ( Var[S0] + μ-2) (2(1-ρ))-1 + μ-1. 

Queueing Formula References 
We have collected a short list of references that you might find useful in estimating cycle time via 
queueing models. This list is by no means exhaustive; it merely represents sources that we have 
found especially helpful. 

• S. Asmussen. 1987. Applied Probability and Queues. John Wiley & Sons. 

• F. Chance. 1999. The Factory Explorer User Manual. Wright Williams & Kelly. 

• D. Connors, G. Feigin, and D. Yao. 1996. A Queueing Network Model for Semiconductor 
Manufacturing. IEEE Transactions on Semiconductor Manufacturing, Vol. 9, No. 3, 412-
427. 

• D. Gross and C. M. Harris. 1997. Fundamentals of Queueing Theory. John Wiley & Sons. 

• W. Kraemer and M. Langenbach-Belz. 1976. Approximate formulae for the delay in the 
queuing system GI/G/1. Congressbook, 8th Internat. Teletraffic Congress, Melbourne, 
235-1/8. 

• N. Prabhu. 1981. Basic Queueing Theory. Technical Report No. 478, School of Operations 
Research and Industrial Engineering, Cornell University, Ithaca, New York. 

• W. Whitt. 1983a. The Queueing Network Analyzer. Bell Systems Technical Journal 62: 
2779-2815. 

• W. Whitt. 1983b. The Performance of the Queueing Network Analyzer. Bell Systems 
Technical Journal 62: 2817-2843. 
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