Fast and Accurate Analysis of Extended Natural Gas Composition and Physical Properties Using a Temperature Programmable Micro GC Fusion

Gulf Coast Conference 2015
Debbie Alcorn
INFICON, Inc.
2 Technology Place
East Syracuse, NY 13057, USA
Outline

• Natural Gas Analysis
• Natural Gas Composition
• Micro GC History
• Micro GC Fusion Features
• Micro GC Configuration
• Diablo EZReporter for Physical Property Calculation
• Chromatograms
• Compliance with GPA Standards
• Conclusion
INFICON Global Presence

900 employees; offices in 17 countries
Natural Gas Analysis

• Natural gas composition analysis is critical for:
 • Producers and gatherers
 • Gas distribution companies
 • Gas utility companies
 • Gas engine and appliance manufacturers
 • Independent testing laboratories
• Due to variations in natural gas composition, it is important to measure **physical properties**, especially for custody transfer situations
• Software automatically calculates physical properties such as:

 ![Heating Value (BTU/cu. ft)](#)

 The amount of heat released during the combustion of a specified amount of a substance

 ![Relative Density/Specific Gravity](#)

 The ratio of the density of a substance to the density of water
Natural Gas Composition

<table>
<thead>
<tr>
<th>Component</th>
<th>Gross Heating Value (BTU/Cu. Ft)</th>
<th>Wellhead %</th>
<th>Pipeline %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>0</td>
<td><10</td>
<td>< 2</td>
</tr>
<tr>
<td>Carbon Dioxide</td>
<td>0</td>
<td><10</td>
<td>< 1-2</td>
</tr>
<tr>
<td>Methane</td>
<td>1010</td>
<td>70-90</td>
<td>93-96</td>
</tr>
<tr>
<td>Ethane</td>
<td>1770</td>
<td><10</td>
<td>< 1</td>
</tr>
<tr>
<td>Propane</td>
<td>2516</td>
<td><10</td>
<td>< 0.5</td>
</tr>
<tr>
<td>Isobutane</td>
<td>3252</td>
<td><2</td>
<td>< 0.5</td>
</tr>
<tr>
<td>n-Butane</td>
<td>3262</td>
<td><2</td>
<td>< 0.5</td>
</tr>
<tr>
<td>Isopentane</td>
<td>4001</td>
<td><2</td>
<td>< 0.5</td>
</tr>
<tr>
<td>n-Pentane</td>
<td>4009</td>
<td><2</td>
<td>< 0.5</td>
</tr>
<tr>
<td>Hexanes Plus</td>
<td>5129</td>
<td><2</td>
<td>< 0.2</td>
</tr>
</tbody>
</table>
Micro GC History

- 3000 Micro GC (µGC) has over ten years of proven excellent analytical performance
- Micro GC Fusion® expands the capability of the 3000 Micro GC
3000 Micro GC

- Microelectromechanical systems (MEMS) based GC
- Isothermally heated capillary columns
- Micro Thermal conductivity detector (µTCD)
- Analysis can be conducted directly on-site or in a lab
The Next Generation – Micro GC Fusion

- Micro GC Fusion builds on proven 3000 Micro GC technology
 - Utilizes the same MEMS injectors and TCD

- Traditional Micro GC technology is limited due to:
 - Isothermal column temperature, leading to potential carryover issues
 - Ambient temperature effects
 - Software and operating system compatibility

- Micro GC Fusion addresses these issues using new technology
Micro GC Fusion Features

- **Micro GC Fusion new features include:**
 - Temperature programmable columns for fast temperature ramping
 - Additional heated zones to minimize ambient temperature effects
 - Web-based interface to eliminate software compatibility issues
 - Front panel display
 - Solid-state hard drive for data storage
 - Optional integrated sample conditioner
Benefits of Temperature Programming

- Temperature ramping based on resistive column heating allows for:
 - Faster runs
 - Rapid column cleaning
 - Sharper peaks
 - Expanded application range (ex. extended natural gas analysis)

- Ramping profile is independently optimized for each module

- Cooldown time is optimized to achieve short cycle times
Isothermal vs. Temperature Programming

- Isothermal runs result in broad, late eluting peaks
- Fast temperature ramping improves peak shape, run time, and column cleaning
- Example – Propane
 - Isothermal ~160 seconds
 - Temperature ramping ~50 seconds
 - Increase in peak height

Column: RT-Q-Bond
Injector: Variable
Ramp: 50°C → 90°C → 240°C (2°C/s, 2.2°C/s)
Integrated Sample Conditioner

- An optional integrated sample conditioner can be configured

- The sample conditioner allows for:
 - Reduction of sample pressures of up to 1000 psi down to approximately 5-10 psi
 - Filtering of particulates
 - Heated sample at 100°C

- A quick connect replaces the standard 1/16 in. inlet
Single Module Natural Gas Analysis

Column: RT-Q-Bond
Injector: Variable
Ramp: 45°C → 250°C (2.5°C/s)
Extended Natural Gas

- Often, it is desirable to analyze C₆ to C₁₂ components in order to obtain more information about the gas sample.
- A second channel using a Rxi-1ms column provides additional information for extended hydrocarbon analysis.

Column: Rxi-1ms
Ramp: 50°C → 130°C → 280°C (2°C/s, 5°C/s)
Extended Natural Gas – C12 Analysis

- In order to analyze C12 in the gas phase, the extended natural gas calibration standard was heated.
- For retention time comparison, a heated sample bag containing straight chain hydrocarbons (C6 to C12) is overlaid with the calibration standard.

Column: Rxi-1ms
Ramp: 50°C → 130°C → 280°C (2°C/s, 5°C/s)
Diablo EZReporter for Physical Property Calculation

- Allows customized viewing of results
- Calculates physical properties such as:
 - Component, gross, and net heating values (BTU/cu.ft)
 - Relative density (specific gravity)
 - Wobbe Index
 - And more
- Creates reports in PDF, CSV, or TXT format
Natural Gas Standards

• Method Standard GPA 2261 (Industry standard)
 • Portable Micro GC statement
 • TCD
 • Grouped hexanes plus
 • Repeatability

• Calculation Standards used by EZReporter:
 • ASTM 3588
 • GPA 2145
 • GPA 2172
 • ISO 6976
Micro GC Fusion Repeatability

- Percent relative standard deviation (%RSD) is used to measure instrument performance
- 10 runs were conducted using the same gas standard

<table>
<thead>
<tr>
<th>Component</th>
<th>Calibration Gas Concentration</th>
<th>Retention Time %RSD</th>
<th>Concentration/Area %RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>1.550%</td>
<td>0.054</td>
<td>0.236</td>
</tr>
<tr>
<td>Carbon Dioxide</td>
<td>1.201%</td>
<td>0.061</td>
<td>0.177</td>
</tr>
<tr>
<td>Methane</td>
<td>88.654%</td>
<td>0.132</td>
<td>0.163</td>
</tr>
<tr>
<td>Ethane</td>
<td>3.001%</td>
<td>0.120</td>
<td>0.252</td>
</tr>
<tr>
<td>Propane</td>
<td>1.996%</td>
<td>0.067</td>
<td>0.211</td>
</tr>
<tr>
<td>Isobutane</td>
<td>1.003%</td>
<td>0.054</td>
<td>0.187</td>
</tr>
<tr>
<td>n-Butane</td>
<td>0.998%</td>
<td>0.053</td>
<td>0.178</td>
</tr>
<tr>
<td>Isopentane</td>
<td>0.299%</td>
<td>0.05</td>
<td>0.295</td>
</tr>
<tr>
<td>n-Pentane</td>
<td>0.300%</td>
<td>0.053</td>
<td>0.276</td>
</tr>
<tr>
<td>C6s</td>
<td>0.598%</td>
<td>Group range</td>
<td>0.309</td>
</tr>
<tr>
<td>C7s</td>
<td>0.332%</td>
<td>Group range</td>
<td>0.391</td>
</tr>
<tr>
<td>C8 Plus</td>
<td>0.068%</td>
<td>Group range</td>
<td>2.76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>%RSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Heating Value – Ideal (BTU/cu. ft)</td>
<td>0.015</td>
</tr>
<tr>
<td>Gross Heating Value – Real (BTU/cu. ft)</td>
<td>0.015</td>
</tr>
</tbody>
</table>
Compliance with NGA Standard

- GPA 2261 calls out repeatability for compound concentrations

<table>
<thead>
<tr>
<th>Component</th>
<th>Repeatability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>2%</td>
</tr>
<tr>
<td>Carbon Dioxide</td>
<td>3%</td>
</tr>
<tr>
<td>Methane</td>
<td>0.2%</td>
</tr>
<tr>
<td>Ethane</td>
<td>1%</td>
</tr>
<tr>
<td>Propane</td>
<td>1%</td>
</tr>
<tr>
<td>Isobutane</td>
<td>2%</td>
</tr>
<tr>
<td>n-Butane</td>
<td>2%</td>
</tr>
<tr>
<td>Isopentane</td>
<td>3%</td>
</tr>
<tr>
<td>n-Pentane</td>
<td>3%</td>
</tr>
<tr>
<td>Hexanes Plus</td>
<td>10%</td>
</tr>
</tbody>
</table>
Compliance with NGA Standard

<table>
<thead>
<tr>
<th>Component</th>
<th>Repeatability</th>
<th>Calibration Gas Concentration</th>
<th>Acceptable Range</th>
<th>10 Run Average Normalized Concentration</th>
<th>Pass/Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>2%</td>
<td>1.550%</td>
<td>1.519-1.581</td>
<td>1.548</td>
<td>Pass</td>
</tr>
<tr>
<td>Carbon Dioxide</td>
<td>3%</td>
<td>1.201%</td>
<td>1.117-1.225</td>
<td>1.200</td>
<td>Pass</td>
</tr>
<tr>
<td>Methane</td>
<td>0.2%</td>
<td>88.654%</td>
<td>88.477-88.831</td>
<td>88.667</td>
<td>Pass</td>
</tr>
<tr>
<td>Ethane</td>
<td>1%</td>
<td>3.001%</td>
<td>2.971-3.031</td>
<td>2.996</td>
<td>Pass</td>
</tr>
<tr>
<td>Propane</td>
<td>1%</td>
<td>1.996%</td>
<td>1.976-2.016</td>
<td>1.998</td>
<td>Pass</td>
</tr>
<tr>
<td>Isobutane</td>
<td>2%</td>
<td>1.003%</td>
<td>0.983-1.023</td>
<td>1.003</td>
<td>Pass</td>
</tr>
<tr>
<td>n-Butane</td>
<td>2%</td>
<td>0.998%</td>
<td>0.978-1.018</td>
<td>0.998</td>
<td>Pass</td>
</tr>
<tr>
<td>Isopentane</td>
<td>3%</td>
<td>0.299%</td>
<td>0.290-0.309</td>
<td>0.299</td>
<td>Pass</td>
</tr>
<tr>
<td>n-Pentane</td>
<td>3%</td>
<td>0.300%</td>
<td>0.291-0.309</td>
<td>0.299</td>
<td>Pass</td>
</tr>
<tr>
<td>Hexanes Plus</td>
<td>10%</td>
<td>0.998%</td>
<td>0.898-1.098</td>
<td>0.990</td>
<td>Pass</td>
</tr>
</tbody>
</table>
Conclusion

- Micro GC Fusion is an ideal measurement for natural gas analysis across a variety of applications
- Micro GC Fusion complies with industry standard methods and has excellent retention time, area, and concentration repeatability
- Combined with Diablo EZReporter, Micro GC Fusion is a powerful tool that can be used in the field or in the lab
For more information, visit:

www.INFICON.com

Or

Booth #440
Questions?